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Abstract—Emails related to the development of a software
system contain information about design choices and issues
encountered during the development process. Exploiting the
knowledge embedded in emails with automatic tools is chal-
lenging, due to the unstructured, noisy and mixed language
nature of this communication medium. Natural language text
is often not well-formed and is interleaved with languages with
other syntaxes, such as code or stack traces.

We present an approach to classify email content at line
level. Our technique classifies email lines in five categories (i.e.,
text, junk, code, patch, and stack trace) to allow one to sub-
sequently apply ad hoc analysis techniques for each category.
We evaluated our approach on a statistically significant set
of emails gathered from mailing lists of four unrelated open
source systems.

Keywords-Empirical software engineering; Unstructured
Data Mining; Emails

I. Introduction

Software repositories supply information useful for sup-
porting software analysis and program comprehension [17].
Different repositories offer different perspectives on systems:
For example, issue reports open a view on defective entities,
thus enabling studies on defect location and prediction [14],
while repositories archiving communication occurred among
developers contain valuable “information [that helps] develop-
ers resolve crucial questions about the history, rationale, and
future plans for source code” [36]. In particular, development
emails contain discussions on topics ranging from implemen-
tation details to high-level design. The main maintainer of the
Real-Time Linux explains that “mailing list archives provide
a huge choice of technical discussions” and that developers
do not write documentation because they believe that “it is
all documented in the [...] mailing list” [18]. Email data helps
to understand a system, its history, and its design rationale,
thus supporting program comprehension [4]; email data also
“offers the best opportunity for a researcher to observe the
development process,” as “developers reveal their thought
processes most naturally when communicating with other
software developers” [30].

However, obtaining objective and accurate results from
software repositories is not trivial: The information extracted
must be relevant, unbiased, and its contribution comprehen-
sible. Researchers are studying repositories to understand
what information is more relevant (e.g., in bug reports [37]
or in code changes [22]) and the impact of data quality on
mining approaches and analyses [10], [34]. In particular,
extracting valuable data from communication repositories

(e.g., IRC chat logs, mailing lists) require the most care, as
the documents leave complete freedom to the authors. For
example, Bettenburg et al. presented the risks of using email
data without a proper cleaning pre-processing phase [9].

NL documents are usually treated as bags of words–a
count of terms’ occurrences. This simplification is proven
to be effective in the information retrieval (IR) field, where
techniques are tested on well-formed NL documents [25]. In
software engineering, although effective for some tasks (e.g.,
traceability between documents and code [1]), this approach
reduces the quality, reliability, and comprehensibility of the
available information, as NL text is often not well-formed
and is interleaved with languages with different syntaxes:
code fragments, stack traces, patches, etc.

We present a work for advancing the analysis of the
contents of development emails. We argue that we should not
create a single bag with terms indiscriminately coming from
NL parts, code fragments, email signatures, patches, etc. and
treat them equally. We need to recognize every language in
an email to enable techniques exploiting the peculiarities of
each category. This work contributes to a deeper and more
detailed analysis of email communication among developers.

We propose an approach, based on a combination of
parsing techniques and machine-learning (ML) methods,
to classify the contents of development emails in five
categories: NL, source code, patch, stack trace, and
junk (text that does not add valuable information, such
as auto-generated disclaimers, authors’ signatures, or
erroneous characters). Our technique works at the line level,
which—by inspecting hundreds of emails—we found to be
the appropriate granularity for email content classification.
We created a web application to manually classify email
content in the chosen categories. We classified a statistically
significant set of emails from four java open source software
(OSS) systems, used to evaluate the accuracy of our approach.

The contributions of this paper are:
1) a novel approach that fuses parsing and ML techniques

for classification of email lines;
2) a web application to manually classify email content;
3) the manual classification of a statistically significant

sample set of emails (for a total of 67,792 lines) from
mailing lists of four different software systems–in the
form of a freely available benchmark; and

4) the empirical evaluation of our approach against the
benchmark.



Structure of the paper. In Section II we motivate our
work. In Section III we describe the related work. In Sec-
tion IV we show how we collected and manually annotated
the email data. In Section V we detail our classification
methods and their evaluation. We discuss threats to validity
in Section VI and conclude in Section VII.

II. Motivation

Figure 1 shows the body of an example development
email. Due to the variety of languages used, if we consider
the content of such email as a single bag of words, we would
obtain a motley set of flattened terms without a clear context,
thus severely reducing quality and amount of available
information. Inversely, by automatically distinguishing the
parts composing the email, we support many tasks, such as:

(1)  Alice wrote:
(2)  > On Mon 23, Bob wrote:
(3)  >> Dear list,
(4)  >> When starting up ArgoUML on my MacOS X system (Java 2)  
(5)  >> it throws a NullPointerException very soon. You'll find the 
(6) >> trace below. I hope someone knows a solution. Thanks a lot!

(7) >> Exception in thread "main" java.lang.NullPointerException
(8) >> at
(9) >> javax.swing.event.SwingSupport.fireChange(SwingChange.java)
(10)>> at javax.swing.AbstractAction.setEnabled(AbstractAction.java)
[...]
(11)>> at uci.uml.Main.main(Main.java:148)

(12)> I'm sorry I can't help you Bob but thanks for sharing the stack...
(13)> Alice.
(14)> -- 
(15)> "Beware of programmers who carry screwdrivers." --L. Brandwein

(16)Alice, I believe we must change Explorer.java to fix Bob's problem:
(17) public void setEnclosingFig(Fig each) {
(18)  super.setEnclosingFig(each);
(19)  if (each != null || (each.getOwner() instanceof MPackage)) {
(20)   m = (MPackage) each.getOwner(); }

(21)The problem is in the condition, I attach the diff with this version:
(22)--- src/org/argouml/ui/explorer/Explorer.java (revision 14338)
(23)+++ src/org/argouml/ui/explorer/Explorer.java (working copy)
(24)@@ -147,1 +147,1 @@
[...]
(25)    super.setEnclosingFig(each);
(26)  - if (each != null || (each.getOwner() instanceof MPackage)) {
(27)  + if (each != null && (each.getOwner() instanceof MPackage)) {
(28)    m = (MPackage) each.getOwner(); }

(29)I hope this change is fine by you, if so, please apply it =)
(30)Cheers, Carl.
(31)-- I used to have a sig, but it took up much space so I got rid of it!
(32)---------------------------------------------------------------------
(33) To unsubscribe, e-mail: dev-...@argouml.tigris.org
(34) For additional commands, e-mail: dev-...@argouml.tigris.org

junkNL text patch stack tracesource code

Figure 1. Example development email with mixed content

Traceability recovery. In Figure 1, the email is referring
to several classes (e.g., Main, Fig, and MPackage), but only
the class Explorer is critical to the discussion: It causes the
failure and the email’s author is changing it to provide a
solution. We realize the importance of Explorer by reading
the NL line 16. As part of our ongoing investigation on
email archives [4], we often found this pattern: Artifacts

mentioned in NL parts of emails are more relevant to the
discussion than artifacts mentioned in other contexts (e.g.,
stack traces). A traceability method based on bags of words
(e.g., [5]) cannot recognize whether references to artifacts
appear in a NL context, to increase the link relevance. Such
a method can only use the number of occurrences to weight
more certain terms [25], leading to imprecise results. In
Figure 1, a weighting based on occurrences would give the
most relevance to class MPackage (mentioned 5 times), which
is actually marginal to the discussion.

By recognizing the context in which a term appears, one
can elicit weights for words appearing in a document dy-
namically and more accurately, improving the traceability
links’s quality and giving more information to the user.

Stop words removal. To better characterize documents,
IR research invites to remove stop words, i.e., very common
words [25], thus weighting more the peculiar terms of a
document. This approach is less beneficial when applied to
development emails: By removing stop words, one reduces
the noise in NL parts, but also deletes information in parts
with a different vocabulary (e.g., source code). For example,
deleting the stop word “each” from the content of Figure 1
means also deleting a variable name in a code fragment
(lines 17–20) and a patch (25–28). This is suboptimal, since
variable names provide relevant information [23]. Similarly,
we delete important information by removing programming
language keywords from NL.

By recognizing the different parts that compose an email,
one can use different common terms removal techniques,
exposing the most relevant information.

Artifact summarization. Due to the amount of data
produced during a system’s evolution, researchers investigated
how to expose only the significant parts to reduce information
overload (e.g., [28]). The proposed techniques are tailored to
specific types of artifact (e.g., code [19], NL documents [20])
and cannot be applied to mixed documents, such as emails.

By recognizing the different parts of an email, one can
use the most suited summarization technique according
to each part’s type and extract correct information.

Fact extraction. To know the facts expressed in code
fragments, patches, or stack traces, one can use ad hoc parsers.
In Figure 1, using a parser for patches, one recognizes that
the file being modified is Explorer (lines 22–23). Similarly,
NL text can be analyzed with NLP techniques [21]. However,
ad hoc parsers cannot be applied to mixed content, as they
are not robust enough to manage unexpected data.



By distinguishing the type of each email line, we can
exploit ad hoc analysis techniques to extract precise
information.

Non-essential information removal. In Figure 1, 8 lines
out of 34 contain irrelevant data–“junk”. Previous research in-
dicated how some changes in version history are not essential,
and how their detection and filtering can improve change-
based analysis techniques [22]. Similarly, the detection and
removal of junk from email content increase the quality of
the data [9], thus improving the quality of analyses.

By recognizing the noise in emails, the important data
emerges, improving the information extraction quality.

III. RelatedWork
Researchers applied NL analysis techniques to software-

related documents and devised approaches to improve the
comprehension of the NL parts. For example, Dekhtyar et
al. [15] discussed the promises and perils of text mining
for NL software artifacts. Here we focus on research on the
recognition of the different parts that compose NL artifacts.

The work by Bettenburg et al. [9] focuses on making the
research community aware of the noise in email data and
presents the importance of a proper cleaning pre-processing
phase. The authors suggest possible filtering heuristics to
recognize noise and irrelevant information. Later, Bettenburg
et al. devised infoZilla, a tool to recognize and extract
patches, stack traces, source code snippets, and enumerations
in the textual descriptions that accompany issue reports [8].
It is composed of four independent filters, one per category,
which are used in cascade to process the text. The source code
filter exploits an approach inspired by island parsing [27],
while the others are based on text matching implemented
through regular expressions. In the task of differentiating
documents (i.e., deciding whether they contain or not each
category), infoZilla reached almost perfect results, with
precision and recall values above 0.95 in all the categories.
InfoZilla has been effectively applied to investigate relevant
features of text in issue reports [37].

Compared to bug comments, development emails present
the following differences: (1) they contain a larger NL
vocabulary, since the discussion is not limited to bug related
issues; (2) they present more noise, generated for example
by email headers and authors’ signatures; and (3) emails
pose greater challenges in text recognition, since many email
clients automatically wrap long lines of text, thus breaking
the right formatting [11]. Bird et al. proposed an approach to
measure the acceptance rate of patches submitted via email in
OSS projects [11]. They extracted code patches from emails
and used them to analyze the developers’ interactions.

Some information retrieval approaches targeted the clas-
sification of text or the recognition of information with

specific patterns [21], exploiting probabilistic and ML models
(e.g., Maximum Entropy Models [7] or Hidden Markov
Models [6]). Tang et al. addressed the issue of cleaning
the email data for text mining [33]. The authors proposed a
four-step approach to clean emails: (1) non-NL text filtering,
(2) paragraph recognition, (3) sentence boundaries detection,
and (4) word normalization. Their method first filters out
email headers, signatures, and program code (without a
distinction from patches or stack traces); then it recognizes the
paragraphs and sentences that compose the remaining NL text;
finally, it corrects misspelled words. The authors randomly
chose a total of 5,459 emails from 14 unrelated sources
(e.g., newsgroups at Google) and created 14 data sets in
which they manually labeled headers, signatures, quotations,
and program codes. Given the labelled data, the authors
implemented a classifier for each step of their approach. All
the classifiers use Support Vector Machines (SVM) and are
based on specific features (e.g., number of words). At line
level classification, they achieved an f-measure of 0.81 in
recognizing code, and 0.98 and 0.90 for header and signature.

Carvalo and Cohen devised methods to recognize signature
blocks and reply lines in emails [13]. They worked at the
line level and tested the effectiveness of a set of features
with many ML classifiers. In the signature detection task the
methods reached an f-measure value of 0.97.

In our previous work we proposed Besc, a lexical approach
to recognize the lines of development emails that contain
Java code fragments [3]. Even though Besc achieves good
results in terms of effectiveness and practical performance,
it specifically focuses on recognizing code and can only be
partially used in the context of a more comprehensive email
text classification. For example, Besc merges lines of stack
traces, patches, and actual source code, under the umbrella
of code fragments: In Figure 1, it would indiscriminately
recognize lines 9–11, 17–20, and 25–28 as code fragments.
Although such an approach can be useful for certain system
analyses (see [3]), it generates a classification that does not
allow one to (1) distinguish lines written in NL; (2) recognize
patch context and headers (e.g., lines 22–24 in Figure 1);
(3) distinguish complete blocks of stack traces, (e.g., lines
7–11, to use ad hoc parsers); (4) remove the non-relevant
information (i.e., “junk”).

Summing up, previous work differs from the current as it:
• addressed more compact classification tasks, for example

only detecting patches [11] or signatures [13];
• considered a larger granularity or different data sources

(e.g., bug reports [8]);
• did not distinguish structured data forms (e.g., by

merging patches, code, and stack traces [3], [33]);
• hard-code all the classification rules, thus not covering

unexpected cases (e.g., [3]).
We strive for an approach with a fine granularity and a wide
breadth, able to provide a robust classification, which can be
used for increasing the quality of subsequent analyses.



IV. Data Collection and Classification
Since we strive for devising a method for reliably and

precisely classifying email lines, with the aim of improving
data quality and comprehension, we need data sets that are
accurate, comprehensive, and of statistically significant sizes.
This is critical for the validation and leads to more reliable
training for the supervised classification methods. To this
aim, we implemented a web application to assist the manual
classification of email content in categories.

A. Data Collection
Different software systems often use different applications

to manage email repositories. We tackled this issue by
importing data from MarkMail (http://markmail.org), a web
service storing more than 8,000 up-to-date mailing lists.

Table I
Email data sets used in the experiment, by system

System
URL

Mailing listMailing listMailing listMailing list
System

URL Inception
EmailsEmailsEmails

System
URL Inception

Total After Filtering Sample

ArgoUML
argouml.tigris.org

Jan 2000 25,538 25,538 379

Freenet
freenetproject.org

Apr 2000 23,134 23,134 378

JMeter
jmeter.org

Jan 2006 24,005 5,814 361

Mina
org.apache.mina.dev

Feb 2001 21,384 14,499 375

Total 94,061 68,985 1,493

Table I shows the four software systems and mailing lists
we considered. We selected unrelated systems emerging
from the context of different free software communities,
i.e., Apache, ArgoUML, and Freenet. The development
environment and paradigms, and the usage of the mailing lists
are likely to differ, thus mitigating external validity threats.

We imported all the messages starting from the mailing list
inception (second column in Table I) to the end of 2010. The
only pre-processing conducted on the emails was filtering
out messages automatically generated by the bug tracking
system and the versioning system.

From each filtered mailing list, we extracted statistically
significant sample sets (last column, Table I), which were
used by the approach without any pre-processing on the text.
Since we had no prior knowledge on the distribution of line
categories in the populations, we opted for simple random
sampling [35] to pick the emails. The chosen sizes have a
95% confidence level1 and a 5% error margin.

B. Data Classification
To test our approach and train supervised ML classifiers,

we needed to manually classify the 1,493 sample emails. To
ease this manual task and alleviate its error-proneness, we
devised Mailpeek, a web application written in Smalltalk
using the Seaside framework [16]).

1See [5], [35] for more information about sample size determination.
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Figure 2. Mailpeek: our web app for classifying email content

Figure 2 shows the main window of Mailpeek, as it appears
in a web browser after a user selects a mailing list of interest
and the application extracts a random email among those not
automatically filtered. Mailpeek displays the email metadata
(point I) and content (point II), with vertical bars to show
indentation levels and increase readability.

Users conduct the classification task at the character
level: To label a block, they (1) click on starting and
ending characters, (2) verify the correctness of the selection
(which is shown in a yellow background), and (3) apply
the appropriate category, either by clicking on a button in
the left menu (point III), or using keyboard shortcuts. The
character granularity provided us the basis to decide which
granularity was appropriate for the automatic classification,
i.e., line granularity (see Section IV-C).

When users hover with the mouse on any character in
the email content area (point II), the character font size
triples (point IV). According to Fitts’ Law [24], this eases
the selection, thus decreasing fatigue and errors.

Once an email is completely classified, the user clicks on
save (point V) and Mailpeek loads another random email
among those not yet classified. The skip link allows the user
to leave out non-valid emails that were not removed by the
filtering phase. The top menu (point VI) allows users to
change mailing list or trigger the importer.

Two graduate students from the REVEAL Research Group
at the University of Lugano, with several years of Java
programming experience, conducted the manual classification
task on two distinct sets of emails. We evaluated the inter-
rater agreement by asking them to also classify 5% of the
emails analyzed by the other person. In this sample, we
found 12 non concordant lines (less than 0.2%).

http://markmail.org


C. Data Distribution

Table II reports categories’ distributions in the sample sets.

Table II
Distribution of the categories per line, by system

ArgoUMLArgoUML FreenetFreenet JMeterJMeter MinaMina TotalTotal

NL Text 10,945 47.2% 7,923 59.6% 7,778 41.8% 6,496 51.2% 33,142 48.9%

Junk 11,122 47.9% 4,096 30.8% 9,734 52.3% 4,633 36.5% 29,585 43.6%

Patch 470 2.0% 986 7.4% 339 1.8% 287 2.3% 2,082 3.1%

Source Code 304 1.3% 29 0.2% 591 3.2% 990 7.8% 1,914 2.8%

Stack Trace 364 1.6% 254 1.9% 165 0.9% 286 2.3% 1,069 1.6%

TotalTotal 23,20523,205 13,28813,288 18,60718,607 12,69212,692 67,79267,792

Most lines are NL; more than 30% of lines are junk, thus
stressing the impact of noise on email data; the frequency of
other categories is lower and the ranking changes according
to the mailing list. The different composition of the email
sets’ contents reflects the different usage of mailing lists
among the communities. Some lines are hybrid: they belong
to more than one category, and are mostly composed of junk
not separated by the NL text. They account for less than 5%
of the population (i.e., 3,362 lines). To mitigate the bias in
the experiment we include them as separated instances.

V. Experiment

We created a number of techniques based on ideas gathered
both from the IR field, which we reshaped and adapted,
and from language programming parsing. Even though the
techniques can be used in isolation, we achieved the best
results by creating a unified approach.

A. Term Based Classification

In IR systems, documents are considered as bags of words,
where syntactic information, ordering, and constituency of the
words play no role in determining their meaning. In practice
each document is modeled as a vector of features, which
correspond to terms in the corpus vocabulary. For example, if
we consider a document (d), the cardinality of the vocabulary
(|C|), and how many times each term (ti) occurs in d, we could
define the document vector as: vd = [t1(d), t2(d), . . . , tC(d)].

This simple vector modeling has been widely used with
supervised ML algorithms to achieve very effective results in
automatic text classification [25], [31]. We ground the first
techniques on the same basis: We consider lines as vectors
of terms and use ML for their classification.

In the following we we describe and motivate our choices
in terms of the used ML technique and vector features (i.e.,
terms), which cannot be based on results from the IR field,
as they refer to other domains and classification tasks.

1) Machine-learning method: We employ Naı̈ve Bayes,
a method of supervised learning (i.e., ML algorithms that
use classified training examples to infer the classification
function). Naı̈ve Bayes relies on the conditional independence
assumption: The presence of a feature is unrelated to the

occurrence of the other features. Even though the assumption
is a strong simplification, the method often outperforms
more sophisticated techniques [21]; in particular in text
classification, Naı̈ve Bayes achieves significant results [12].
An asset of Naı̈ve Bayes is its linear complexity, which
allows training and classification to be performed efficiently,
even with a very large number of features.

The method uses Bayes’ rule [21] to compute the proba-
bility that a line l, made of tk terms, belongs to class c:

P(c|l) ≈ P(c)
∏

k

P(tk |c) (1)

It computes the posterior probability P(ci|l) for each class
and chooses the one with the highest probability. This is the
maximum a posteriori (MAP) hypothesis [21]:

CMAP = arg max
c j∈C

P(c|l) ≈ arg max
c j∈C

P(c)
∏

k

P(tk |c) (2)

If we want to classify the line d = “Alice wrote :” as text,
junk, or code, the algorithm first computes the probabilities
as: P(text|l) = 0.43, P( junk|l) = 0.55 and P(code|l) = 0.02,
then selects the value 0.55, thus classifying l as junk.

2) Selection of the terms: Words: They are the funda-
mental tokens of all the languages we want to classify. We
judge the words in our corpus of 67,792 non-empty lines
to be proper features for line modeling. Contrarily to most
IR methods, we do perform neither stop word removal (i.e.,
excluding very common words), as we expect very frequent
words to be representative of a class (e.g., Java keywords
in code), nor stemming (i.e., collapsing the morphological
variants of a word), as we expect some variants to be more
characteristic of certain classes (e.g., verb tenses in NL text).
Punctuation: We must distinguish lines written in languages
with different syntaxes, thus we consider punctuation to be a
valuable aspect. Unless the punctuation marks are separated
by words or spaces (e.g., the dots in javax.swing., are two
occurrences of the feature “.”), we consider them as a single
term, thus recognizing special characters, such as “@@” in
line 24 in Figure 1. We do not consider email reply threading
characters (e.g., > and >> in lines 2-15 in Figure 1) at this
point, as they do not have a definite role for line classification.
Bi-grams: Naı̈ve Bayes relies on the conditional indepen-
dence assumption, which makes the modeling of NL text
features feasible. However, the other considered languages
have a stricter syntax with patterns of terms appearing to-
gether (e.g., “public void” in code). To model this dependency
characteristic of some terms, thus also reducing the negative
effects of Naı̈ve Bayes’ assumption, we also consider bi-
grams (i.e., pairs of terms appearing one after the other).
Context: All the features considered so far are extracted
only from the line under classification. However, some of
the considered classes (i.e., patch and stack trace) have a
structure recognizable only if considering surrounding lines.
For example, line 18 and line 25 have the same content,



thus can be mapped to the correct class only considering the
context lines. Researchers proposed to solve a similar problem
by adding features with characteristics of lines close to the
one under classification [13], [33]. We adapt this approach
to our case by considering what appears in the preceding
and following lines. For example, in addition to “@@”, we
have the features “@@-lineBefore”, and “@@-lineAfter”.

Table III
Results with term based classification, by feature sets

Number
of Features

10-fold cross validation10-fold cross validation10-fold cross validation Mailing list cross validationMailing list cross validationMailing list cross validationNumber
of Features Correct LinesCorrect Lines Impr. sig. Correct LinesCorrect Lines Impr. sig.

Words 12,658 46,555 68.6% 46,056 67.9%

Words, Punctuation 19,384 62,938 92.8% p < 0.001 58,172 85.8% p < 0.001

Words, Punctuation, 
Bi-grams 145,187 63,413 93.5% p < 0.001 58,568 86.4% p < 0.001

Words, Punctuation, 
Bi-grams, Context 435,561 63,708 93.9% p < 0.001 60,580 89.4% p < 0.001

3) Line modeling: After defining the aforementioned
features, we modeled each line as vector a of n+1 dimensions.
The first n elements are the chosen features, while the last
one is the manual classification value (e.g., “patch”). The
first column of Table III shows the values of n according to
the considered subset of features. Each feature is populated
with the corresponding term’s occurrences in the line.

B. Training and Testing

Since we use a supervised ML algorithm, we need to
train it on classified data. We use two different approaches
for training the model and show how this affects the results
when testing of the model’s accuracy. To evaluate the model’s
accuracy, we count the number of correctly classified lines
and we use two IR metrics [25]: precision (P =

|T P|
|T P+FP| ) and

recall (R =
|T P|
|TOT | ). T P (true positives) are correctly classified

lines, FP (false positives) are not correctly classified lines,
and TOT is the total number of lines. F-measure is the
weighted harmonic mean of P and R [25].

1) Ten-fold stratified cross-validation: As a first step, we
apply 10-fold stratified cross validation [35]: We split the
dataset in 10 folds, use 9 folds (90% of the lines) to train
the prediction model, and use the remaining fold to test the
model’s accuracy. This process is repeated 10 times rotating
the training and testing folds. The distribution of classes
is kept equal in training and test sets. Columns 2 and 3
in Table III show the results. Each subset of features adds
information that increases the results in a significant way
(column 3). When considering all the features, the ratio of
correctly classified instances reaches almost 94%.

2) Mailing list cross-validation: Different mailing lists
discuss about different systems and are likely to use different
words and jargon. For example the mailing list signature (e.g.,
lines 32–34 in Figure 1) have different terms in each mailing
list. Thus, term-features that work for one mailing list may not
be useful for others. To better test the generalizability of the
results achieved by the classifier, we conduct a “mailing list

cross validation.” In practice, it is a 4-folds cross validation,
in which folds are neither stratified nor randomly taken, but
correspond exactly to the different mailing list: We train the
classifiers on three mailing lists and we try to predict the
classification of the remaining mailing list. We do this four
times rotating the mailing lists and we measure the average
results. Columns 4 and 5 in Table III show the results.

As expected, testing with mailing list cross validation, the
performance of the classifier drops, even when considering
all the features. However, this is a more relevant test to
understand the results of the classifier applied to unseen Java
development mailing lists, and we use it in following.

Table IV
Mailing list cross validation on the best set of features

classified as ➙classified as ➙ NL Text Junk Patch Source
Code

Stack
Trace Precision Recall F-Measure

NL Text 32,062 1,046 20 8 6 0.894 0.967 0.929

Junk 3,269 26,225 54 14 23 0.942 0.886 0.913

Patch 207 343 946 585 1 0.452 0.454 0.453

Source Code 309 121 1,074 410 0 0.403 0.214 0.280

Stack Trace 35 97 0 0 937 0.969 0.877 0.920

Table IV reports confusion matrix [25], precision, recall,
and F-measure values for the classification with all the term-
features (i.e., words, punctuation, bi-grams, and context). The
best results are achieved in classifying text, junk, and stack
trace, while patch and code are often misclassified among
themselves. This is reasonable, since recognizing those lines
requires a large context: Even a human reader could not
determine to which class line 28 in Figure 1 belongs without
inspecting many lines. However, differentiating code and
patches might be useful for various tasks, such as improving
traceability links or automatically estimating the topic and
purpose of the email (see Section II).

C. Term Based Features and Overfitting

By considering the entire set of features (i.e., words,
punctuation, bi-grams, and context), we obtain a complex clas-
sification model with more features than training instances. In
such a scenario, overfitting is likely to occur—this hypothesis
is supported by the reduced performances of the classifier in
mailing list cross validation (see Table III). By reducing the
features that are not valuable to correctly predict instances
outside the training set, we decrease overfitting and increase
the generalizability of the results.

Since we use words and punctuation to describe the
common traits of each language, we suppose that the terms
that rarely occur in the corpus are less relevant and can be
removed. We investigate this hypothesis by gradually filtering
out features (from all four kinds) that appear in less than t
lines and inspecting the results.

Figure 3 shows the average classifier’s performance in
mailing list cross validation, with t ranging from 1 to 4,587
(higher values reduce the number of features to less than 10
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Figure 3. Results on training and test sets, by line threshold for features

greatly reducing the results). The blue dashed line (above)
is the average percentage of correctly classified lines on the
training set, while the red solid line (below) is the average
percentage on the test set. The best result on the training set
(i.e., 96.1%) is set at t value of 1, (i.e., we consider all the
features, 115,864 on average when training on three mailing
lists), while the best result on the testing set (i.e., 89.9%) is
set at t value of 11 (i.e., 5,618 features on average), which
reduces some noise. The optimal t value for the best testing
set results, however, changes according to the mailing list:
Two lists have a t value of 2, one of 25, and one of 46. A
valid approach to find a good value for t, also for unseen
data, is to consider the point with the highest ratio between
testing results and training results [35]. We find this hot spot
with a threshold of 548 lines (i.e., 122 features on average).
Interestingly the number of features is a tiny fraction of the
initial ones, but the testing results are reduced only by a 1.5%
(i.e., 88.3%). Higher thresholds lead to lower performances.

D. Parsing Based Classification

We tackle the classification from a different perspective
and use a different approach: parsing. In fact, three of the
considered classes (i.e., stack trace, patch, and source code),
which are either produced or consumed by a machine, present
a clearly structured and defined syntax that may be recognized
even if embedded in a noisy unstructured context. We use a
technique from our previous work [2] to write specialized
parsers per each class (excluding NL text), based on the
concept of island parsing [27]. For space reasons, we detail
only the most salient features of each parser. The complete
source code is available at http://mucca.inf.usi.ch.

D.1. Stack Trace Parsing
We define a terminology: The exceptionMessage is the NL

message included at the beginning of stack traces (e.g., line
7 in Figure 1); the atLine is a method invocation within a
specific file (e.g., lines 8–11); the ellipsisLine reduces lengthy
stack traces and has the form: “. . .<number> more”; the
causedByLine may be in any point in a trace and introduces
a nested trace and has the form: “Caused by: <stacktrace>”.

Among these elements, atLines and ellipsisLines are the
most recognizable ones. By using the concept of island pars-
ing [32] and the Smalltalk parser generator PetitParser [29],
we defined a grammar to obtain a parser to extract these two
elements, even if embedded in the noisy content of emails
or arbitrarily split on more lines, because of erroneous line
breaks. By testing our approach on the whole corpus we
found no errors in this parsing phase.

The exceptionMessage and the causedByLine elements
have an unpredictable structure (e.g., different Java virtual
machine versions may output the same error message
differently), thus they cannot be parsed with a specific
grammar. We use a double-pass approach: First, we mark all
the atLines and ellipsisLines, then we look for each line that
contains strings such as “exception”, “error”, etc. When such
a line exists, if the next n lines belong to those lines marked
in the first step, we classify it and all the lines up to the first
atLine as stack trace. Since exceptionMessages are made of
not more than three lines, we use an n of 3. The value can
be adapted if a system uses another message length.

For example, when we apply our stack trace parser to the
email in Figure 1, in the first pass, it classifies lines 8–11
as stack trace; in the second pass, it considers lines 5 and 7
as exceptionMessage candidates, since they both contain the
string “exception”. Finally, it only picks line 7, because in
the next 3 lines there is an atLine (in this heuristic, we also
count the empty lines, such as the line between 6 and 7).
D.2. Patch Parsing

We define a terminology: The first two lines of a patch
(e.g., lines 22 and 23) are the patchHeader, and contain the
reference to the modified file and, optionally, the revision
versions (e.g., lines 22 and 23 in Figure 1); the lines
showing the changes done by the patch (e.g., line 22) are
the patchBlockHeader; and all the lines in the chunk (e.g.,
lines 25–28) are the patchBlock.

Similarly to the previous approach, we start from the
most recognizable lines and expand to include the more
ambiguous ones. The parsing is done in a single pass: We
wrote a grammar to generate a parser that recognizes the
patchHeader by using “—”, “+++”, and “@@” as hooks;
then it recognizes the patchBlockHeader (thanks to its clear
structure), then it matches the following patchBlock. The
patchBlocks are problematic, since they have variable length
and an unclearly defined ending. In fact, after the deleted
and added lines (which are marked with initial “+” or “-”
signs, as in lines 26 and 27), patches include some contextual
lines: Their number may vary between zero and three, or
more if not well formatted. We implemented a lookahead
heuristic that checks whether the lines after the “+” or “-”
signs might be good candidates as patch. The heuristic checks
whether the lines are source code, through a reduced version
of the code parser described later, and in the positive case it
classifies them as patch.

http://mucca.inf.usi.ch


D.3. Source Code Parsing
Among the three classes with the most structured language

(i.e., stack trace, patch, and source code), code is the most
ambiguous. This is due to the fact that email authors usually
do not report complete compilation units (e.g., a whole Java
class definition), but only selected fragments (e.g., the method
declaration in lines 17–20 in Figure 1). These fragments may
present more ambiguities, with respect to NL and junk, than
blocks of patches or stack traces: For example, if a line
comprises only the words “public class”, it can be either the
beginning of a class declaration or a simple NL sentence.

We devised a parser based on the technique detailed in
our previous work [2]: We wrote a complete Java grammar
for PetitParser, by implementing the latest specification
of the official Java language. Then, we implemented an
island parser able to recognize most of the constructs of
the grammar (including single and multi-line comments, but
excluding constructs that are too ambiguous with NL, such
as expressions), starting from the most comprehensive (i.e.,
compilation unit) down to very specific ones (e.g., expression
statements). We also added rules to recognize incomplete
constructs (such as method declarations without the body–
common in email discussions).

Compared to Besc [3], this island parser reaches higher
precision and is also able to locate constructs that span on
more lines. For example, Besc cannot classify a line with
only “public class” as code, while our island parser classifies
it as code depending on the surrounding lines.

This parser matches most of the content of patchBlocks,
as they also contain valid source code. This raises a number
of false positives. We avoid this by chaining the code parsing
to the patch parsing: First we detect the patches, then, on the
lines that are not classified as patch, we use the code parser.
As a beneficial side effect, this chained procedure reduces
the text and the ambiguities to be managed by the island
parser, thus increasing the performances.

D.4. Junk Parsing
Noisy text, such as authors’ signatures, is hard to auto-

matically distinguish from NL text; however, some peculiar
common patterns can be matched with a parser. This approach
is made of three steps: (1) matching and classification of
email headers (e.g., lines 1 and 2 in Figure 1) with a regular
expression; (2) identification and extraction of signatures of
mailing lists (e.g., common lines added to the end of every
email sent to the same list, such as lines 32–34) and authors;
and (3) usage of the recognized signatures to automatically
compose a grammar for generating a parser to match them,
under any possible formatting or position in the email body.
To recognize signatures, we consider all the emails whose
last block of text is not quoted from previous emails (this
can be easily achieved by considering lines that do not
end with email reply threading characters, such as > and
>> in lines 2-15 in Figure 1). In these emails, the authors

themselves conclude the message and most probably include
their signatures. For example, the email in Figure 1 contains
the author’s signature in the last block. Among the selected
emails, we only consider the last not quoted block. We
analyze it backward starting from the last line (e.g., from
line 34 up to 16). When we encounter a line that starts with,
or is only composed of, two or more dashes, underscores,
or stars, we take out the lines up to the bottom and consider
this as a signature. The process continues until it reaches
the top of the not quoted block. For example, the algorithm,
applied to the email in Figure 1, would extract lines 32 to
34, and line 31 as block signatures.

By classifying these blocks as junk, we would miss the
cases in which signatures are in quoted text (e.g., lines 14–
15). We, thus, conduct the third step: We use each extracted
string to automatically define a grammar able to recognize
the signature in any possible position or formatting the text;
then, we use these grammars to automatically generate the
relative parsers; finally we classify matched lines as junk.

D.5. Results
Table V reports the results of each parser in the classifica-

tion of the lines into the corresponding type. For example,
the first line covers the results in using the Stack trace parser
to classify lines as stack trace. The false positives (e.g., 4
in the first row) are lines classified as stack trace by the
method, but with a different manual classification.

Table V
Single classification results achieved by using parsers

Total 
Instances

True 
Positives

False 
Positives

Precision Recall F-Measure

Stack trace parser

Patch parser

Source code parser

Junk parser

1,069 1,054 4 0.996 0.986 0.991

2,082 1,996 0 1.000 0.959 0.979

1,914 1,715 74 0.959 0.896 0.926

29,585 20,372 226 0.989 0.689 0.812

All the parsers reach high classification values, while being
mailing list independent and requiring no training. However,
parsers have limitations: (1) They are manually implemented,
and for this reason they cannot predict or cover all the
possible variants of the patterns that they match, especially
due to truncated content; (2) the values reached in classifying
junk are lower than those achieved with the ML approach.

Next, we present a method that overcomes these issues by
fusing ML and parser-based approaches.

E. Unified Approach

This approach fuses characteristics of the term based
classification and the parser-based approaches.

1) Adding parsing results to Naı̈ve Bayes: Naı̈ve Bayes
is not limited to use terms as features: One can include
any relevant aspect as a feature in the classification process.
Given these premises, we add the parser-based classification
output to improve the Naı̈ve Bayes ML process. We do this
by adding four new features to the feature-vectors, in addition
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those presented in Section V-A. Each new feature maps the
output of a parser: The value is 1 when the corresponding
parser matches the specific line, 0 otherwise. We used Naı̈ve
Bayes and performed mailing list cross validation.

Varying the value of the threshold t (see Section V-C),
we found the best average results to be at t = 11. Table VI
shows the confusion matrix on the best results achieved by
adding the four parser-based features to the Naı̈ve Bayes
approach. It correctly classified 62,093 instances (91.3%),
1,513 more than the previous approach.

Table VI
Results adding parser-based features

classified as !classified as ! NL Text Junk Patch
Source
Code

Stack
Trace

Precision Recall F-Measure

NL Text 31,898 960 97 158 29 0.908 0.962 0.934

Junk 3,087 25,787 325 203 183 0.962 0.872 0.915

Patch 55 29 1,719 278 1 0.739 0.826 0.780

Source Code 78 13 185 1,636 2 0.719 0.855 0.781

Stack Trace 9 6 1 0 1,053 0.830 0.985 0.901

Comparing the confusion matrices of the ML approaches
(Table VI and IV), we see that the new features helped to
decrease the instances wrongly classified as NL text. Being
NL the most frequent class (see Table II), it has a strong
impact on the evaluation of the MAP hypothesis of Naı̈ve
Bayes (see Section V-A1); since the new features reduced the
NL class impact, they play a major role in the classification.

Although achieving the best results so far, this approach has
drawbacks. First, we note that both patch and code have more
than 150 wrongly classified instances: This contradicts the
high precision value reached by the single parser classifiers.
It is probably due to the fact that, even if these parser features
have a high weight in the computation, they are at the same
level of the other features that, being a large number, also
influence the results. We expect an approach not having

the conditional independence assumption of Naı̈ve Bayes
to better model the new features, which are highly inter-
dependent. In the following we explore a two-pass classifier
approach to better exploit parsers, yet relying on Naı̈ve Bayes
qualities.

2) Unified Classification Approach: To explain our unified
classification approach, we refer to Figure 4. The idea behind
this approach is using Naı̈ve Bayes to evaluate a partial
classification only on the features based on terms, and then
use another ML classifier to model the fusion of Naı̈ve Bayes
results and parser-based classifications.
Training: We first (Point 1) extract the emails from the three
mailing lists on which we want to train the ML algorithms,
then, we provide them—along with the manual classification—
both to the parser-based classifiers (Point 2) and to the Naı̈ve
Bayes learning algorithm (Point 3), in the form of feature-
vector on words, punctuation, bi-grams, and context. Naı̈ve
Bayes trains a classifier, but instead of returning the instance
classifications, it outputs a 5-dimension vector for every line:
Each dimension represents a class (e.g., junk) and the value
is the probability—evaluated by Naı̈ve Bayes—that the line
belongs to that class. In other words, instead of picking
the highest value and providing the final classification, we
output all the 5 probabilities and we map them to features,
thus reducing the initial features to 5. At the same time, the
parsers create other four features, as in Section V-E1. Once
both feature sets are evaluated, they are merged into a vector
of 9 dimensions, plus the manual classification (Point 5).
This vector is treated by another ML algorithm to train the
final classifier (Point 6): The actual output of the training.

The choice of the ML technique for the second step is
critical: We need an algorithm to correctly model the peculiar
characteristics of our features. We tried a number of different
ML approaches. The decision tree [26] (broadly used in data
mining) is the most suited algorithms, because it is favorable



to the parsers’ features, which are almost mutually exclusive.
Testing: The test process is depicted in the bottom half
of Figure 4. We take emails from the fourth mailing list
and we remove the manual classification. Then, we provide
the emails to the parsers (Point 8) and create the feature-
vectors, to be given as an input to the previously trained
Naı̈ve Bayes classifier (Point 7). Subsequently, the output
of the two technique is merged in a unified 9-dimensions
vector, which it is used as input to the second ML classifier,
previously trained, which outputs the final classification. We
compare this classification (Point 10) to the manual one
(Point 9) and we evaluate the results. The training and test
phases are repeated 4 times rotating the four mailing lists.

Table VII
Results of the unified approach on mailing list cross validation

classified as ➙classified as ➙ NL Text Junk Patch Source
Code

Stack
Trace Precision Recall F-Measure

NL Text 31,584 1,470 0 87 1 0.937 0.953 0.945

Junk 1,958 27,498 12 115 2 0.943 0.929 0.936

Patch 68 49 1,935 30 0 0.990 0.929 0.959

Source Code 86 118 8 1,702 0 0.880 0.889 0.885

Stack Trace 18 12 0 0 1,039 0.997 0.972 0.984

We tested the approach with a range of t values and the
highest ratio of correct instances (94.1%) at a t value of
120, which lies within the range described in Section V-C.
The lowest ratio of correct instances with a t value (i.e., 11)
within the range is 92.1%; out of the range, values are lower.

Table VII shows the results achieved by the approach on
the best t value. This two-steps approach, which differently
merges and model the information, improves the results for
all the classes by increasing not only the results related to the
parser classifiers (i.e., patch, stack trace, and code), but also
those connected to the Naı̈ve Bayes algorithm. The F-measure
values are all increased, with a decrease in precision of junk
classification and in recall of NL classification, probably due
to the overall lower weight given to Naı̈ve Bayes results.

VI. Threats to Validity

Construct Validity threats regard the relation between
theory and observation, i.e., measured variables may not
measure conceptual variables.

To classify email content we rely on error-prone human
judgment. To alleviate this issue, we devised a web applica-
tion to ease the annotation process. Two annotators cross-
inspected 10% of the emails. They found only 12 erroneously
classified lines. We corrected these 12 errors in the set of
email that was used for the experiments. We expect the same
low error proportion in the rest of the sample, which may
affect the accuracy of the results.

Statistical Conclusion threats are concerned with whether
we have enough data to support our claims.

We took samples of email populations representative with
a 95% confidence and a 5% error level, which are standard

values. On the number of lines, our corpus has 67,792 not
empty lines.

External Validity threats are concerned with the general-
izability of the results.

The approaches we tried may show different results when
applied to other software systems and mailing lists. To alle-
viate this, we chose 4 systems with unrelated characteristics
and developed by separate communities. The usage of the
mailing list varies, as confirmed by the different line class
distributions. To test the generalizability of our approach
we conducted cross mailing list validation. A second threat
concerning the generalizability is that our approach is tailored
to a single object-oriented programming language, i.e., Java.
However, since most of the language related line recognition
relies on island parsers (see Section V-D), it can be easily
adapted to other programming languages that have a similar
structure (e.g., C#, Python), without the need of changing
the ground concepts we used.

VII. Conclusion

Email communications contain valuable information to
support software development, comprehension, and analysis.
In this paper, we contribute a novel technique to automate
the analysis of such valuable, but also voluminous, data that
is specifically tailored for software engineering.

In particular, we presented a unified 2-step approach
that fuses automated supervised ML approaches with island
parsing to perform automatic classification of the content
of development emails into five language categories: NL
text, source code fragments, stack traces, code patches, and
junk. The results obtained are very positive, even with cross
mailing list validation. In fact, parser-based classifiers are
mailing list independent and offer a solid basis made more
robust by the probabilistic ML approach.

This work is a step toward a more effective exploitation of
email data, for example by allowing improved traceability re-
covery techniques, refined artifact summarization approaches,
and more precise fact extraction methods.

As a future work, we plan to investigate whether other
classification techniques (such as infoZilla [8]) can be
included in our unified approach to improve and strengthen
the overall results.

All data sets of the experiment and source code can be
found at the paper’s companion website located at http://
mucca.inf.usi.ch.
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