
in*Bug: Visual Analytics of Bug Repositories
Tommaso Dal Sasso, Michele Lanza

REVEAL @ Faculty of Informatics — University of Lugano, Switzerland

Abstract—Bug tracking systems are used to track and store the
defects reported during the life of software projects. The underly-
ing repositories represent a valuable source of information used
for example for defect prediction and program comprehension.
However, bug tracking systems present the actual bugs essentially
in textual form, which is not only cumbersome to navigate,
but also hinders the understanding of the intricate pieces of
information that revolve around software bugs.
We present in*Bug, a web-based visual analytics platform to
navigate and inspect bug repositories. in*Bug provides several
interactive views to understand detailed information about the
bugs and the people that report them.
The tool can be downloaded at http://inbug.inf.usi.ch

I. INTRODUCTION

Due to the complexity and size of non-trivial software
projects, the development of a system is always accompanied
by software defects, or bugs. To manage these defects, modern
software projects use bug tracking systems (also known as
bug trackers or issue trackers), such as Jira or Bugzilla. With
bug trackers, end users and developers can report bugs they
encountered while using the system, usually by means of
custom web interfaces, where one can enter details about
a specific bug, creating a so-called bug report. A typical
bug report, such as the one depicted in Figure 1, contains
information about (1) the title and id of the bug, (2) the user
who reported the bug and the people involved in its history,
(3) its current status, (4) its opening and closing date, (5) its
last modification date, (6) the project to which the bug report
pertains, (7) events (such as changes of the people assigned to
the bug report, etc.) during the life cycle of the bug, etc. The
example bug report depicted in Figure 1 is from a specific bug
tracker, FogBugz 1, but it does not differ significantly from
the reports recorded with other bug trackers.

Various researchers have mined and used the information
stored by bug trackers to perform several types of analyses,
such as identifying duplicate bug reports [1], measuring the
quality of a report [2], predicting future defects [3], performing
traceability linking [4], locating features [5], ameliorating bug
triaging decisions [6], etc. The actual goal however is to ease
the life of developers in the handling of bug reports, as part
of the development process.

One problem is that bug reports are disconnected from the
software system they pertain to, and it is up to the developers
to restore the link between a bug report and the interested
components of a system. Another problem is that bug reports,
such as the one depicted in Figure 1, are displayed on individual
web pages that list their properties, making them cumbersome

1http://www.fogcreek.com/fogbugz/

Fig. 1. Example bug report in the FogBugz bug tracking system.

to handle and making it also difficult to obtain a “big picture”
of the existing open bug reports and how they overall affect
the system they pertain to. Moreover, this information is stored
and presented as text, which makes it hard to understand the
properties of a bug report.

We present in*Bug, a web-based bug analytics platform,
that eases the inspection, navigation, and comprehension of
bug repositories, mostly by means of interactive visualizations.
in*Bug provides an entry-level big picture overview to browse
the content of a repository, and a detailed, complementary,
interactive, and finer-grained view to understand detailed
information about the bugs and the people that report them.

Other researchers have produced custom visualization of
bugs, such as D’Ambros et al. [7], [8] who proposed visual-
izations that tried to depict the complex information revolving
around bugs, which are de facto independent entities when it
comes to program comprehension, and not mere side effects
of the evolutionary process that software systems are subjected
to. While D’Ambros et al. only created standalone depictions
of information taken from BugZilla, our goal with in*Bug is
to depict live data from a bug tracker, namely FogBugz. In
the near future, we plan to offer in*Bug as a complementary
means to inspect and analyze information pertaining to bugs
reported in the context of the many projects that make up the
software ecosystem revolving around the Pharo2 open-source
community.

We present the current features of in*Bug, discuss its current
implementation, and illustrate its usage.

2http://www.pharo-project.org



1

2

A

4

3

Fig. 2. Main user interface of in*Bug

II. IN*BUG IN DETAIL

A. Main view

Figure 2 depicts the main user interface, composed of the
following panels:

Bug lifetime panel (1). This view depicts the bug reports
contained in the bug repository, showing their duration (as a
horizontal stacked bar chart) and status (using different colors,
listed in Table I).

TABLE I
BUG REPORT EVENT COLOR CODES

Active orange Work
Needed

red

Closed gray Resolved dark gray
Working On blue On Hold cyan
Unknown light grey Selected yellow

In Figure 2 one specific bug (marked as A) is under focus.
The vertical line to the right indicates the current date, making
it also clear whether a bug report is still active or not (if it is,
it will touch that line). This view also helps the developer to
evaluate the complexity of a bug report by summarizing the
events occurred during its lifetime.

Project selection panel (2). In this panel the user can pick
the projects whose bugs she is interested in. All projects are

shown as a tag cloud, where the tag size indicates the number
of bugs reported for the project, also indicated with numbers
between parentheses close to the name of the projects.

Details panel (3). This panel provides all the information
reported about the bug report under focus in the bug lifetime
panel. This panel present both the metadata and the list of
events that happened during the lifetime of a bug, including
description and date of each event. The metadata is presented
as extracted from the bug repository, e.g., the opening date,
the status, the last modification date, etc.

Filter and options panel (4). This panel allows the user
to sort and filter bugs. The three default sorting criteria order
the issues by project, opening date, or date in which the bug
has been resolved. The filter field offers the possibility to
enter either regular expressions or pieces of Smalltalk code as
queries, allowing the users to submit custom made queries to
filter bugs.

B. Details of a bug

This view (see Figure 3) presents a detailed representation
of a specific bug report. Each section provides a description
of the element that compose the description of a defect.

Bug Report Metadata (1). The first panel summarizes
the important metadata of the bug report: the id, the last
modification, the current status, the opening date and possible



1

2

3

4

A

B

Fig. 3. in*Bug details page showing the properties of a bug report

closing date, the project and the target milestone for the issue
resolution.

Users List (2). This panel gives an overview of the people
involved in the evolution of the bug. In particular, the list
displays the information of each user that performed an action
on the issue, that was stored as an event. The details include
the picture of the user, the user name and the user’s email
address3, to contact the people working on an issue.

Bug Report Life Visualization (3). This panel shows a
visualization of the life of a bug report during time. The left
border represents the date the issue was opened, the right border
represents the moment the bug was closed, or the current date
if the bug report is still active. The section (A) proposes the
same visualization of the list view in the main view (II-A),
emphasising the status changes during time. The section (B)
shows a line diagram where the height represents the criticality
of the status (i.e., fixed is the lowest and active is the hightest)
and highlighting each event with a circle.

Event Interactive View (4). This is a list of all the events
that compose a bug report. It shows the metadata of the event

3We obfuscated the email addresses in the figure for privacy reasons.

and whether it is an automatic event or an event generated
by a user. It also detects and highlights the patches of code
submitted to the tracker for the issue resolution, and provides
a link to download and inspect the patch. The user can click
on an event to highlight it both in the events list and in the
bug report lifetime visualization. Figure 4 shows a detail of
the event list, where we can observe the three types of events:
(A) shows a comment by an user; (B) shows a submitted patch.
The upper left icon offers a link to the repository page of the
patch; (C) indicates events automatically generated from bots
in the tracker.

Inspired by more semantically rich and elaborated views,
such as Ogawa et al’s storylines [9] or Kuhn and Stocker’s
storytelling timelines [10], the left border of each event is
colored according to the status of the event, to help the user
to keep track of the evolution of the bug while inspecting the
list of events.



A

B

C

Fig. 4. List of events in a bug report

C. Implementation & Current Dataset

in*Bug is a web application built on top of the Pharo
Smalltalk4 environment. It uses the Seaside5 web framework
to provide the data stored in a MongoDB database and
implements a RESTful API to communicate with the client.
The client interface is implemented in JavaScript using the
data manipulation and visualisation library D3.js6.

in*Bug is currently targeted at a specific FogBugz repository
revolving around the Pharo ecosystem. In Table II we provide
a summary of the currently available data, which has already
reached considerable complexity.

TABLE II
SUMMARY DATA OF THE Pharo BUG TRACKER

Number of projects 46
Number of bug reports 8,666
Number of open bug reports 613
Total number of events 79,437
Average events per issue 9

in*Bug also provides links to patches on SmalltalkHub, a
source code repository to store versioned Smalltalk code. In
Figure 5 we can see how these three services interact.

The bug reports data is imported from FogBugz and stored
in the MongoDB repository. The web application then loads
the data and present it in the list view of the main interface.
The details of a single report are presented in the details view,
where the user can follow a link that leads to a patch submitted
to SmalltalkHub.

4http://www.pharo-project.org
5http://seaside.st
6http://d3js.org/

IMPORT MongoDB
Patches

Bug List View

Details View

Web Application

Fig. 5. The interactions of in*Bug with the FogBugz and SmalltalkHub services

III. CONCLUSION

We have presented in*Bug, a web-based visual analytics
platform to explore the content of a bug repository. in*Bug
allows to get a complete overview of a whole repository, as
well as detailed and meaningful information on a single bug
report, either through visualizations that allow to interact with
the data, or with the query engine embedded in in*Bug that
allows the user to submit queries and dialog directly with the
bug reports.

We intend to provide further visualizations that describe the
resume data of a single bug repository, to ease and improve the
comprehension of the evolution of a software project during
time.

The approach of in*Bug is general enough to be applied to
any bug tracking system. Since we want to propose in*Bug
as a tool for practical development, we focused on the Pharo
platform and we targeted its community. We plan to improve
in*Bug and refine the existing visualizations based on feedback
obtained from Pharo users.

Acknowledgements. We acknowledge the Swiss National
Science foundation’s support for project 146734 “HI-SEA”.

REFERENCES

[1] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to
detecting duplicate bug reports using natural language and execution
information,” in Proceedings of the 30th International Conference on
Software Engineering (ICSE 2008). ACM, 2008, pp. 461–470.

[2] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zim-
mermann, “What makes a good bug report?” in SIGSOFT FSE, 2008,
pp. 308–318.

[3] M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating defect prediction
approaches: A benchmark and an extensive comparison,” Empirical
Software Engineering, vol. 17, no. 4-5, pp. 531–577, 2012.

[4] T. F. Bissyandé, F. Thung, S. Wang, D. Lo, L. Jiang, and L. Réveillère,
“Empirical evaluation of bug linking,” in CSMR, 2013, pp. 89–98.

[5] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location
in source code: a taxonomy and survey,” Journal of Software: Evolution
and Process, vol. 25, no. 1, pp. 53–95, 2013.

[6] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?”
in Proceedings of the 28th International Conference on Software
Engineering (ICSE 2006). ACM Press, 2006, pp. 361–370.

[7] M. D’Ambros and M. Lanza, “Bugcrawler: Visualizing evolving software
systems,” in Proceedings of CSMR 2007 (11th IEEE European Conference
on Software Maintenance and Reengineering). IEEE CS Press, 2007,
pp. 333–334.

[8] M. D’Ambros, M. Lanza, and M. Pinzger, ““a bug’s life” — visualizing a
bug database,” in Proceedings of VISSOFT 2007 (4th IEEE International
Workshop on Visualizing Software For Understanding and Analysis).
IEEE CS Press, 2007, pp. 113–120.

[9] M. Ogawa and K.-L. Ma, “Software evolution storylines,” in SOFTVIS,
2010, pp. 35–42.

[10] A. Kuhn and M. Stocker, “Codetimeline: Storytelling with versioning
data,” in ICSE, 2012, pp. 1333–1336.



Fig. 6. The result of a Smalltalk query

APPENDIX - DESCRIPTION OF THE DEMO

We foresee a very interactive demo, where in front of the
audience we would use in*Bug to navigate the bug repository
mentioned in Table II. In the following we do provide a
plausible demo scenario, but would much rather prefer to
have the audience give input on which bugs we would analyze
together with them.

1) Bug List View. The beginning of the demo is to present
the concepts behind the main interface of in*Bug. We
are going to introduce the idea of a bug report as an
independent entity and describe the visual representation
chosen to describe a report. We then describe purpose of
each panel, starting from the bug list: the possibility to
examine a set of issues and their relation in terms of time
collocation (see Figure 2).

2) Bug report manipulation filters. We will show the
capabilities of in*Bug to sort and filter the interesting
reports. We will show an example of query submitted in
Smalltalk, and show how we can find an interesting report
with a visual inspection. Figure 6 shows the result of the
query:
[ :each | each events size > 20 and: [

each involvesUser: ’Camillo Bruni’ ]]

3) Details View. We will select a bug report to inspect and
visualize its properties with the details view presented
in Figure 7. We will present the metadata displayed, the
users involved in the report resolution, then we will see
how the visualization can provide an immediate feedback

on the life of a bug report, and its current status.

Fig. 7. in*Bug details page showing the properties of a bug report

4) Events and Patches. We will examine the list of the
events and the possible types of events described. We
will show when in*Bug can detect if an event is a user
comment, an automatic event or a patch submitted to fix
the problem. We will show how in*Bug provides a link
to directly retrieve the patch and examine it.

We plan to wrap up by having a discussion about other
extensions we are currently implementing, and showing off
some of the directions we are currently pursuing.


