
What Makes a Satisficing Bug Report?
Tommaso Dal Sasso, Andrea Mocci, Michele Lanza

REVEAL @ Faculty of Informatics – University of Lugano, Switzerland

Abstract—To ensure quality of software systems, developers
use bug reports to track defects. It is in the interest of users and
developers that bug reports provide the necessary information
to ease the fixing process. Past research found that users do not
provide the information that developers deem ideally useful to fix
a bug. This raises an interesting question: What is the satisficing
information to speed up the bug fixing process?

We conducted an observational study on the relation between
provided report information and its lifetime, considering more
than 650,000 reports from open-source systems using popular bug
trackers. We distilled a meta-model for a minimal bug report,
establishing a basic layer of core features. We found that few
fields influence the resolution time and that customized fields
have little impact on it. We performed a survey to investigate
what users deem easy to provide in a bug report.

I. INTRODUCTION

When users file a bug report for a software project, their
main hope is that developers will fix it quickly, to minimize its
impact. But what information should they provide to make this
happen? There is a stark mismatch between what developers
perceive as optimally useful in this respect (i.e., steps to
reproduce, stack traces, and test cases) and what users are
effectively able, or sometimes just willing to provide, when
filing a bug report [24].

Bug tracking systems and software projects should define a
reasonable common ground for information to be provided
in bug reports, so that it is not too demanding for users,
yet provides enough information to developers. Nevertheless,
considering what popular issue trackers and projects (e.g.,
Bugzilla,1 JIRA,2 FogBugz,3 and the issue tracker provided
with GitHub4) demand from users, we see that it is quite
diverse and specialized. In particular, each bug tracking sys-
tem provides a core set of common fields, which are often
complemented with additional fields. Such fields may reflect
requirements for specific domains, or represent additional data
customizable by project owners.

For example, the commercial issue tracker JIRA defines
several fields that describe in detail aspects pertaining to the
time management of issues, while the GitHub issue tracker
provides a minimal (and sometimes criticized5) model that,
together with the integration with the Git versioning system,
conceives a bug report as a conversation among developers,
fostering the philosophy of collaborative development pro-
posed by GitHub [20].

1https://www.bugzilla.org/
2https://jira.atlassian.com/
3https://www.fogcreek.com/fogbugz/
4https://github.com/
5https://github.com/dear-github/dear-github

Overall, there is currently no consensus among software
projects and creators of bug reporting systems on essential
mandatory fields to be filled by users in each report, optional
fields that give useful additional information, and free space
for users willing to provide more detailed descriptions.

Our vision is to define the minimum set of information
needed to describe a software defect, to clarify what should
be required by each bug reporting system. In this paper, we
make a step in this direction: We investigate what makes a
satisficing6 bug report. We move from defining a good or more
precisely an optimal bug report and adopt a more pragmatic
view on what users should provide.

We conduct our investigation in three steps: (1) We investi-
gate what users and developers perceive as difficult in writing a
report, by means of an online questionnaire; (2) we investigate
the usage and evolution of issue tracker data, by means of
a large-scale quantitative analysis of the status changes in
submitted bug reports and the impact that customized fields
have on the resolution of a defect; (3) we study which fields
developers use to describe defects, by means of a further
quantitative analysis on the lifetime of reports in relation to
the evolution of report’s state and its completeness in its core
and customized fields.

Our results show that providing more fields in a report
relates to the fixing time: In particular, the bug reports with
longer descriptions tend to be solved quicker. While this might
be intuitive, issue trackers still do not emphasize this aspect
during the submission of a new bug report, putting the accent
on the customization capabilities of the platform. At the same
time, the project-specific bug report fields have little impact
to the fixing time. This paper provides insights on the current
issue tracking practices and defines guidelines in building the
foundations for a new model of an issue tracking system.

The contributions of this work are:

◦ A survey that identifies the components of a bug report
considered difficult to provide by users (Section III-B).

◦ A dataset of 650,000 bug reports, collected from the issue
trackers of BUGZILLA and JIRA (Section III-C).

◦ The model for a minimal bug report, that puts the emphasis
on the shared components of a bug report (Section IV)

◦ An analysis of the usage of the fields in an issue tracker,
from active open source projects (Section IV).

6Satisficing is a neologism coined by Simon [17], [18] combining the verbs
to satisfy and to suffice, and it is used to describe a solution that is roughly
satisfactory and meets some criteria of sufficiency and is better than an optimal
solution that would be too complex or would imply too strong constraints.



II. ISSUE TRACKING SYSTEMS

To obtain an overview of the salient features of issue track-
ers, we briefly present four platforms, selected by importance
and overall adoption in open-source systems: BUGZILLA,
JIRA, the GITHUB issue tracker and FOGBUGZ.

1) Bugzilla: One of the oldest and most popular issue
tracking systems that influenced many other issue trackers.
Developed by the Mozilla Foundation, it is used both by open
source projects7 (e.g., Linux) and by industrial and government
customers (e.g., NASA). The Mozilla Foundation itself uses
BUGZILLA to manage the issues of its projects, like Firefox.
BUGZILLA includes several fields, allowing for a great level
of detail in specifying an issue. However, such a freedom
of choice also produces a complex interface where many of
the values are often left empty, or set to their default value.
Figure 1 shows a typical submission form with both fields
for fixed-option choices and text boxes for narrative (e.g., to
describe how to reproduce the bug).

Fig. 1. Bugzilla Submission Form

2) JIRA: A successful commercial bug reporting systems
used by several customers like Twitter, Linkedin, and Ebay.8

JIRA supports the same model as BUGZILLA, augmenting
its capabilities with a polished user interface and a tight
integration with other development tools, especially with the
version control system.

3) GitHub: A popular web-based GIT repository host-
ing service, used for the development of several popular
open source projects. Together with the GIT hosting service,
GITHUB offers a simple issue tracker to manage the defects
during development. Figure 2 shows the interface of the
GITHUB bug submission form.

7See https://www.bugzilla.org/installation-list/
8See https://www.atlassian.com/company/customers

Fig. 2. GitHub Bug Submission Form

GITHUB adopts a simplified model of a bug report and
a strong integration with the source code (thus giving the
possibility to link issues with specific commits).

4) FogBugz: In this system, the model of a bug report is
similar to BUGZILLA, but more polished and user-friendly,
due to its clean user interface and filtering capabilities. Differ-
ently from GITHUB, FOGBUGZ9 does not simplify the report
model, but it lets users add custom filters and views.

Reflection. To understand the essential traits of bug reports,
we analyze how the data included in bug reports influences
their lifetime. We next analyze the features of a set of bug
reporting systems, to distill a model of common/specific fields
for their bug reports. This model serves as a basis for further
empirical analysis, to determine how these commonalities and
customizations influence the life of the reports.

III. RESEARCH METHOD

To determine what makes a satisficing bug report, we first
need a way to rate the quality of a bug report, then we
can conduct quantitative analysis to determine which features
relate with higher quality. Measuring the quality of bug reports
is hard to do in an automated and unbiased way. For this
reason, researchers proposed different metrics to measure
it [13], all with their limitations, but reasonable enough to be
realistic. In this paper, we decide to consider the lifetime of a
bug report (i.e., the time between the opening and resolution
of a defect) as a viable proxy for its quality rating, as the time
spent dealing fixing software defects is crucial in reducing
the time the system contains a problem. Limitations of this
proxy metric include the fact that the trivial bugs, or the
non-issues, are the ones that require less time to fix, and
that the severity can also have a not negligible impact on
how quickly developers decide to fix a problem. Nevertheless,
the information shared in the bug report has to be satisficing
enough to let developers understand whether it is a trivial fix,
an urgent matter, or something that can wait longer. For this
reason, we find lifetime of a bug report a useful approximation
in aggregate statistical analyses to provide a high-level view
over bug repositories.

9See https://www.fogcreek.com/fogbugz/



We investigate how users and developers use issue tracking
systems and the impact that the provided information has on
the lifetime of a bug report. According to Zimmermann et
al. the information provided by submitter can be partial or
incorrect [24]. To understand what is reasonable for a user to
provide in a report, we conducted a survey asking developers
what they think are the difficult elements to provide. We then
focus on two of the main components that compose a bug
report: (1) its state and (2) the core and optional attributes, to
understand how the provided data is used.

A. Research Questions

When collecting information about software defects, it is
important to know when the submitted data is reliable and ac-
curate. Our goal is to investigate what users can easily provide
and what is harder to obtain; we structure our investigation into
the following question:

RQ1. What are the elements that are perceived as difficult
to provide when reporting a defect?

To understand the relationship between what is described in
a bug report and its lifetime, we have to consider the different
kind of data that reports can provide. This is not trivial,
because different platforms offer different fields to provide
information, with different meaning and values. As a first step
for our quantitative evaluation, we investigate how to define
a meta-model to comprehensively describe information stored
across different issue reporting systems:

RQ2. What is a comprehensive unified meta-model for
describing data from different bug tracking systems?

After having defined the meta-model, we can quantitatively
investigate several aspects of reports related to their lifetime
and evolution. During development, a bug report changes its
state, sometimes several times, ideally converging to a closed
state. The changes in the state of a report are important to
understand its evolution [10]. We are interested in considering
the evolution of the states and see whether the aggregate of
these changes can provide knowledge on the inner logic of an
issue tracker. This leads to the following question:

RQ3. What are the most frequent states and state transitions
in bug reports?

Together with a state, a bug report comes with a set
of attributes that describe the properties of a report. These
attributes can also be defined by the users, to create project-
specific customized fields. We investigate the completeness of
core and custom fields with respect to the lifetime of a bug,
considering the following research question:

RQ4. Does the completeness of standard and project-
specific attributes in a bug report relate to its lifetime?

To answer our questions, we both run a survey (Sec-
tion III-B) and we collect, model, and analyze a large dataset
of bug reports from open source projects (Section III-C).

B. Online Questionnaire

Zimmerman et al. asked users and developers what they
think are the useful elements in a bug report and how hard it is,
in their opinion, to provide those elements [24]. We proposed
a similar questionnaire to the Pharo open source community to
further understand what it is reasonable to expect from users
submitting a bug report. The questionnaire is composed of
two parts: (1) We collect demographic information inquiring
about expertise with programming and with submitting, han-
dling, and fixing bug reports; and (2) we collect information
about respondents’ perception of how difficult it is to provide
different kinds of information when submitting a bug report.
All the questions are formulated as statements (e.g., “It is easy
to provide a description of the failure”) and the respondents
have to declare their agreement using a 5-level Likert-type
scale. We map the results into an integer scale from −2 (i.e.,
“strongly disagree”) to 2 (i.e., “strongly agree”).

We advertised the survey through the development mailing
list of Pharo and we received a total of 22 complete responses.
Table I summarizes the respondents’ expertise. The respon-
dents are experienced with object-oriented programming and
with the Pharo IDE. While they have experience in submitting
and handling bug reports, their experience is lower in partic-
ipating in discussions about bug reports and much lower in
having reports assigned to them. For this reason, we deem the
respondents’ sample to be in line with the aim of our survey.
In fact, we are especially interested in knowing the point of
view of submitters of bug reports, rather than the view of the
developers that “consume” these reports.

TABLE I
EXPERTISE OF THE PARTICIPANTS OF THE SURVEY (AVERAGE)

Activity Average
Experience with Object Oriented programming languages 1.5
Knowledge of Pharo 1.3
Have often bug reports assigned −0.4
Often handle bug reports 0.6
Often participate in discussion in bug reports 0.3
Often submit bug reports 0.7

C. Data Collection

To understand what users and developers collect and provide
in bug reports, we mined the contents of the issue trackers
of several software projects. To collect real development data
for our study, we consider the Apache Foundation and the
Mozilla Foundation: Both platforms contain a considerable
number of popular and active open source projects, with
years of development history. Moreover, both platforms host
several projects tracked on public, dedicated bug trackers:
Mozilla uses BUGZILLA, Apache uses JIRA. They offer a
public REST API to access their repositories in JSON format,
allowing for a clean and reliable data collection.



TABLE II
PROJECTS IN THE DATASET

Issues
Ecosystem Project First Last Count Age (days) Frequency

Apache

Cassandra Mar 7, 2009 Jul 8, 2015 9,723 2,314 5h 42m
Hadoop Jul 24, 2005 Jul 8, 2015 10,191 3,635 8h 33m
Lucene Oct 9, 2001 Jul 8, 2015 6,641 5,019 18h 8m
Maven Nov 20, 2002 Jul 23, 2015 4,663 4,628 23h 49m
Mahout Jan 30, 2008 Jun 25, 2015 1,752 2,702 37h 6m
Pig Nov 2, 2007 Jul 7, 2015 767 2,804 87h 44m
Sorl Jan 25, 2006 Jul 8, 2015 7,728 3,451 10h 43m
Zookeeper Jun 6, 2008 Jul 3, 2015 2,207 2,582 28h 4m

Mozilla

Air Mozilla Apr 14, 2009 Jun 16, 2015 509 2,254 106h 16m
Bugzilla Apr 15, 1998 Jul 27, 2015 19,395 6,312 7h48m
Core Mar 28, 1997 Jul 17, 2015 292,358 6,684 33m
Firefox Jul 30, 1999 Jul 8, 2015 155,078 5,821 54m
Firefox for Android Sep 11, 2008 Jul 28, 2015 18,906 2,510 19m
SeaMonkey Nov 10, 1995 Jul 27, 2015 92,757 7,198 1h 51m
Thunderbird Jan 2, 2000 Jul 8, 2015 42,247 5,666 3h13m

We built a downloader and an importer to collect the data,
serialize the contents of each report, and store the polished data
in a POSTGRESQL database. Table II describes our dataset.

The dataset contains more than 650,000 bug reports, 15%
of which were still open during the data collection phase.
Table III shows an aggregated summary of the dataset we
collected. Each bug tracker has a different set of bug report
states.

TABLE III
CONTENTS OF THE DATASET

Apache Mozilla Total
Open issues 7,545 91,336 98,881
Closed issues 36,127 529,914 566,041
Total Issues 43,672 621,250 664,922

Table IV details them, for each tracker, with the counts of
the bug reports for each state at the moment of the download.

TABLE IV
DIFFERENT STATES OF BUG REPORTS IN BUGZILLA AND JIRA, WITH THE

COUNT OF THE REPORTS CURRENTLY IN EACH STATE AND THE TOTAL
SUM OF ALL THE TIMES A BUG REPORT REACHED A STATE.

Tracker State Current Total
JIRA Closed 21,847 22,460

Resolved 14,280 33,386
Open 6,736 43,203
Patch Available 471 18,944
Reopened 235 3,042
In Progress 84 2,175
Awaiting Feedback 14 15
Testing 4 86
Ready to Commit 1 3

Bugzilla RESOLVED 391,919 579,488
VERIFIED 136,783 143,082
NEW 65,816 353,264
UNCONFIRMED 19,821 297,319
ASSIGNED 3,701 129,057
REOPENED 1,998 32,745
CLOSED 1,212 1,537

D. Data Analysis Techniques

The large volume of data we collected allows us to explore
the usage of issue trackers and to investigate the common
practices of bug tracking. Understanding these aspects can help
us to answer our questions and verify whether the usage of
the properties of a tracker influences the life of a report.

To investigate our research questions, we adopt the follow-
ing approach. To answer RQ3, we build a transition diagram
of all the state changes for each issue tracker, to highlight the
common patterns in the growth of a report, and we weight the
diagram with the values from the dataset. To answer RQ4, we
build a machine-learning-based prediction model to verify how
completeness of fields of a bug report relates to its lifetime.

IV. RESULTS

RQ1: What are the elements that are perceived as difficult to
provide while reporting a defect?

We asked respondents how easy it is to provide 13 different
elements in a report, using a 5-level Likert scale from −2
(“strongly disagree”) to 2 (“strongly agree”). Figure IV shows
a summary of their answers, sorted by increasing difficulty as
reported by the respondents. The majority of the users does
not find excessively hard to provide most of the elements. This
is due to the fact that the Pharo community is composed of
experienced programmers. Interestingly, finding the assignee
is not considered excessively difficult: Again, this can relate
to the community experience, that has a strong core of well-
known developers that work as hub when dealing with defects.
The elements considered to be harder to provide are the entity
(e.g., class, file) that likely contains the defect, the steps to
reproduce the failure, and a test case showing the defect.

Conclusion. Figure IV shows that some elements are per-
ceived as more difficult to provide when submitting a bug
report. There is a set of easier elements, like screenshots,
descriptions of the failure, stack traces, and the details of the
operating system and hardware. Those elements are useful in
identifying the defect, but are less effective than other elements
we identified to support its resolution.



screenshot of the software
showing the failure

description of the failure

stack trace generated by the failure

details of the operating system

technical specs of the
machine (hardware)

examples of code to fix the defect

steps to reproduce the failure

severity of the defect

technical details of the
context (libraries, etc.)

component that caused the
failure, including the version

indication of the developer that
should take care of the problem

entities (the classes, files,packages)
likely to contain the defect

one or more test cases that
generate the defect

Fig. 3. Survey results: The higher the values, the easier it is to provide the
corresponding information, according to the respondents’ perception.

RQ2: What is a comprehensive unified meta-model for de-
scribing data from different bug tracking systems?

To devise a unified meta-model for the data we collected
from the different issue trackers, we extract the model for
each separate platform by reverse engineering the data and by
using the documentation for the various trackers. We identify
the entities that compose a bug report, the fields composing
it, and the relation between the various entities. We intersect
the list of each bug report and select the most common ones,
to summarize the salient traits of a bug report.

Anatomy of a Report. Issue trackers are platform indepen-
dent: They share a flexible common core structure to meet all
the possible requirements of a software system’s development
process. A bug report is then built around a text description of
an issue, where the user can specify the steps to reproduce the
issue or include snippets of code that exemplify the context
where the issue may happen.

The text description is complemented by additional meta-
data, used to improve the report and to track the evolution
of the bug, and it can also contain attachments, like stack
traces and patches. While the description of the issue and
the possibility to attach files is common to all issue trackers,
the metadata used to integrate the description differ in each
platform. We can classify these attributes in three layers:
◦ Common: metadata in every report in each platform, i.e.,

the core set of attributes that describes a bug report.
◦ Platform specific: metadata that are used throughout a single

platform.
◦ Project specific: custom metadata set by the users, used in

a single project.
The Model. From the list of entities in a tracker and their

list of metadata, we built a model to access the data. Given our
focus, we present a view of the model from the submitter’s
point of view. Figure 4 shows the conceptual diagram of
the unified model for a typical bug tracking system with the
frequencies of use for the common fields and trimmed of the
post-report information.
◦ Issue: The main entity representing a bug report, with the

text description and the metadata provided by the user.
◦ Comment: User-provided additional information on a report.
◦ Edit: A change in the existing report. It can group several

changes.
◦ AttributeEdit: A change to a single element: It contains the

modified attribute, the added, and removed text.
◦ Link: The relation (if any) to another report. A link maps

the connection and defines the type of relation (e.g., parent
or duplicate).

◦ Project: The project the issue tracker refers to (e.g., Firefox).
◦ Product: A single instance of an issue tracking platform

(e.g., Bugzilla or JIRA).
◦ Component: The area of the code affected by the defect.
◦ Versions: The software version(s) where the bug was ob-

served.
◦ Milestone: The software version(s) targeted for a fix, for

planning purposes.
There are additional attributes that are not present in every

platform. To map these specific elements, there are entities
that derive from ISSUE (e.g., BUGZILLA ISSUE).

These entities contain the fields other_fields and
custom_fields. These are two dictionary fields that col-
lect all the fields that are not represented in each model, in
an unstructured fashion. The field other_fields contains
the information from a specific bug tracker, shared in all the
projects in that database (like the field alias in BUGZILLA).
The field custom_fields contains non standard attributes
that are customized by the maintainer of each project. For ex-
ample, the attribute cf_status_firefox41, of the project
FIREFOX in BUGZILLA. Some fields may seem redundant: For
example, the field updated_at of ISSUE could be derived
by the information contained it the EDITs; we tolerate a small
degree of duplication of the data, in exchange for flexibility
and completeness with different bug reporting systems.



*1

created_at
source_id
updated_at
custom_fields
other_fields
raw_text
text
attachment

Comment

name
last_import
repository

Project

* 1

name
Product

name
Component

* 1

created_at
source_id
updated_at

Edit

added
field_name
removed

Attribute Edit

*1

*
1

relation
Link

name
Milestone

* 1

1 1

*

1

* 1 name
Version

1 1
source

target

other_fields
Bugzilla Issue

other_fields
Apache Issue

0.03dateduedate

votes 24.83number

93.93description text

userassignee 98.53

dateupdated_at 100

Freq.
(%)

100

100

100

100enum

Type

date

text

text

created_at

summary

issue_type

state

Field

Issue

Fig. 4. Conceptual diagram of the model of a new bug report

RQ3: What are the recurrent states and transitions in reports?

We tracked the evolution of bug reports using the state
attribute, which is an enumeration from a set of predefined
states. Table IV shows the states used in the two bug trackers
we consider. Each platform proposes different conventions to
map the state of a report. Often, different projects use the
same states in a different context and a different distribution,
e.g., bug reports in JIRA converge toward the CLOSED state,
while in BUGZILLA they converge toward a state called
RESOLVED. We analyze the state changes by building a
transition graph, with an approach similar to the one used
by D’Ambros et al. [10].

Figure 5 and Figure 6 show the transition diagrams for JIRA
and BUGZILLA obtained by the collected data.

In the diagrams each node is a state, where the area grows
with the number of reports that traverse that state, as presented
in Table IV. Each arc between two states indicates a transition
from one state to another and its width represents the total
number of transitions. The diagram excludes all edges that
make up less than 1% of all the transitions. Given Figure 5
and Figure 6 we can classify the states in three groups:
◦ Active states: The first group contains the most active states

(i.e., touched by the majority of bug reports), that are often
involved in loops between them.

◦ Intermediate states: These states (e.g., TESTING, IN
PROGRESS, REOPENED) indicate states where an action is
taking place or expected (e.g., a patch is waiting for review
or the continuous integration server is running the tests).

◦ Unused states: Some states are rarely used: AWAITING
FEEDBACK and READY TO COMMIT. They represent some
corner cases that detail extremely specific aspects of the
fixing activity. Their very low usage may hint at a little
interest in tracking these aspects in this way.

The analysis highlights that some projects do adopt cus-
tomized states to track the intermediate aspects of their
projects’ workflow, but they tend to be not used in practice.

Conclusion. The analysis on the usage of the states in
Section IV seems to suggest that:

◦ A simple model with a few states, as the one described by
D’Ambros et al. [10], satisfies the need of tracking the state
of an issue;

◦ Adding customized values to describe additional specific
and intermediate steps in the fixing process is not working
to track a better evolution of the state of a report.

The latter aspect is strengthened by the fact that JIRA
offers less states than BUGZILLA, but these additional states
are rarely used in practice.



testing
(86)

ready to 
commit
(3)

reopened
(3,042)

awaiting 
feedback

(15)

in 
progress
(2,175)

patch available
(18,994)

open
(43,203)

resolved
(33,386)

closed
(22,460)

19.35%

2.84%

14.14%

6.90%

21.45%

5.87%

20.36%

2.14%

2.09%

1.05%

Fig. 5. Transition graph of all the states in JIRA

RQ4: Does the completeness of standard and project-specific
attributes in a bug report relate to its lifetime?

To investigate the impact that the fields have on solving a
defect, we considered the lifetime (defined as the time to the
final fix) of the closed reports.

In addition to its standard set of attributes, each issue
tracker we consider allows projects to define additional fields
to customize the structure of a bug report. In our study, we
group all the attributes in three layers:
◦ Core Fields: The fields that are common to all projects and

all the issue trackers. They map the essential information to
describe a software defect;

◦ Tracker-Specific Fields: The fields that are shared among
all the projects in an issue tracker, but are not present in all
the platforms;

◦ Project-Specific Fields: The fields that are customized by
the user and appear only in a single project.
Each project in our dataset specifies its own set of custom

fields. We also investigate whether these fields have a measur-
able impact on the lifetime of a bug report.

verified
(143,082)

new
(353,264)

assigned
(129,057)

reopened
(32,745)

unconfirmed
(297,319)

closed
(1,537)

14.54%

2.92% 1.51%

10.76%

2.06%

23.20%

10.61%

2.01%

22.90% 6.79%

resolved
(579,488)

Fig. 6. Transition diagram of all the states in BUGZILLA



Table V shows a count of project-specific attributes in our
dataset, including the average and maximum lifetimes of the
corresponding bug reports, reported in days.

TABLE V
NUMBER OF CUSTOM FIELDS PER PROJECT

Project # fields Avg. lifetime (d) Max lifetime (d)
Air Mozilla 5 154 1,004
Bugzilla 5 343 5,650
Core 142 227 5,936
Firefox 112 235 5,314
Firefox for Android 89 76 2,176
SeaMonkey 90 278 5,437
Thunderbird 74 259 5,451
Cassandra 11 61 1,728
Hadoop 13 172 3,012
Lucene 13 182 3,787
Mahout 11 94 1,235
Maven 9 402 3,443
Pig 11 72 2,149
Sorl 7 148 2,858
Zookeeper 12 158 2,108

We now explore the relationship between the various at-
tributes adopted by the different platforms and projects we
considered and the effectiveness of a bug report, measured as
its lifetime.

Preparing the data. To interact with the dataset, we created
a vector space model to allow us to test statistical and machine
learning approaches. Predicting the exact lifetime of a report
would be unpractical and unnecessary: a timeframe for the
resolution would provide a useful, human-understandable mea-
sure, while allowing more accurate predictions. To introduce
such a degree of tolerance, we divide the reports into buckets
according to their lifetime.

Using bucketing we can deal with discrete values and adopt
a classification approach, as opposed to a regression to predict
a continuos variable. We split the lifetime space into four
buckets: less than one day, less than one week, less than one
month, and more than one month. We chose these intervals
because they reflect humane time periods and they describe
increasing timespans, reflecting that the longer a bug report
stays open, the less relevant its exact resolution time becomes.
After bucketing the issues, we model each report as a vector
of booleans (each field maps an attribute of the report and
its value is 1 iff the user filled it) and associate it with its
classification into a bucket of lifetime, which we can feed to
different prediction algorithms.

Principal Component Analysis. To understand the relation
between the completeness of a bug report and the fixing time
of a defect, we want to inspect how much each field contributes
to the lifetime of a bug report.

For this purpose, we use Principal Component Analysis
(PCA) [1] to extract the variance between the different fields.
PCA is a statistical procedure that aims to extract only the
salient features from a data table. PCA transforms the existing
data into variables called principal components, which are
described as a linear combination of the existing features. The
other features are then projected on the principal components.

The components extracted by PCA represent the eigenvec-
tors of the covariance matrix. Internally, PCA implements a
single value decomposition to extract the scores of the factors.

We use PCA to determine which combination of fields
carries the most information with respect to the lifetime of a
defect, by observing which elements are selected to compose
the principal components. To interpret the results and obtain a
general set of fields that influence the lifetime of a bug report,
we consider the core fields of the projects. This operation gives
us the important fields that impact the lifetime of a bug report.

After running PCA, we obtain a set of new components that
can be used to map the dataset. We are not interested in the
new features per-se, but — since the features of the dataset are
the fields of the bug reports — we investigate which original
features were selected to describe the components.

We then inspect how the components are calculated, obtain-
ing the following selected fields:
◦ assignee id: the person the bug report is assigned to;
◦ creator id: the person that submitted the bug report;
◦ description: the number of words in the description of a bug

report;
◦ duedate: if the bug report has a due date;
◦ reporter id: the person that initially reported the defect (can

be different than the creator)
◦ summary: the number of words in the summary of the bug

report.
These fields were extracted by the algorithm as the most

relevant in impacting the lifetime of a bug report. Although
they do not represent the whole amount of information that
is needed to describe a software defect, the fact that they
were selected by PCA indicates that their contribution in
determining the lifetime of a report is significant. It follows
that users and developers should take these elements into
account when submitting a bug report and the issue tracker
should ensure that these fields are exploited accordingly.

Predicting the Lifetime of a Defect. We studied the core
fields that are the most relevant in impacting the lifetime. Now
we investigate how the lifetime gets influenced by the different
fields defined by each project. For such an analysis PCA is
not suited, as the data is too sparse and the features would
be discarded in the process. We therefore adopt a machine
learning approach to estimate an approximate lifetime of a bug
report given its “completeness,” i.e., the number of completed
fields when submitted.

We verify the impact on the prediction of the different
levels of attributes using various machine learning algorithms
on our model, by employing the SCIKIT-LEARN analysis
tools [15]. In particular, we used Naı̈ve Bayes [14], Decision
Trees [14], AdaBoost [6], and Random Forest [8] and validated
our approach using k-fold cross-validation. We balance the
training dataset to get homogeneous buckets containing 50,000
bug reports each, to prevent the different distribution of the
sets to give a bias towards the biggest buckets [3]. In this
context, a random classifier would correctly classify 0.25 of
the instances, so a classifier is better than random if it achieves
a higher proportion.



Table VI shows the prediction results: Each column rep-
resent a classifier, while each row represents each layer of
attributes we add to the model.

TABLE VI
PREDICTION RESULTS: PROPORTION OF BUG REPORTS CLASSIFIED IN THE

CORRECT TIME BUCKET, WITH INCREMENT OVER RANDOM
CLASSIFICATION (25% CORRECTLY CLASSIFIED BUG REPORTS).

NB DT AdaBoost RF
Common 0.27 (+0.02) 0.27 (+0.02) 0.27 (+0.02) 0.27 (+0.02)
+ words 0.28 (+0.03) 0.28 (+0.03) 0.29 (+0.04) 0.28 (+0.03)
+ tracker 0.36 (+0.11) 0.36 (+0.11) 0.42 (+0.17) 0.36 (+0.11)
+ project 0.37 (+0.12) 0.36 (+0.11) 0.42 (+0.17) 0.37 (+0.12)

In the first round we use the common attributes displayed
in Figure 4; in the second, we add the number of words that
compose the summary and the description of the report; in
the third, we add the tracker features, i.e., the attributes that
appear in some issue trackers; in the last, we add the project
features, i.e., the non standard attributes that are customized by
the users of the platform. We follow this order to increasingly
add the more and more specific fields and evaluate the impact
that the different customizations have on the overall model. We
can see from Table VI that the best results are achieved by
AdaBoost [6] using the tracker-specific fields, with an overall
accuracy of 0.42. Differently from the shared and tracker-
specific fields, the project-fields may vary over time. They
are, in fact, constantly added: Firefox, for example, adds a
new custom field specific for each release, which happens once
every 6 weeks. This mutability can raise the question whether
the contribution of these fields is diluted in such a long times-
pan. To mitigate this effect, we recompute our experiments
on the subset of bug reports collected in the timeframe that
starts exactly one year before the dataset collection. The new
dataset is composed of 31,472 bug reports. Table VII shows
the results of our second batch of experiments.

TABLE VII
PREDICTION RESULTS FOR BUG REPORTS OF LAST YEAR.

NB DT AdaBoost RF
Common 0.27 (+0.02) 0.28 (+0.03) 0.28 (+0.03) 0.28 (+0.03)
+ words 0.30 (+0.05) 0.30 (+0.05) 0.33 (+0.08) 0.30 (+0.05)
+ tracker 0.34 (+0.09) 0.37 (+0.12) 0.46 (+0.21) 0.39 (+0.14)
+ project 0.35 (+0.10) 0.39 (+0.14) 0.46 (+0.21) 0.42 (+0.17)

Indeed, the results on the most recent dataset do not differ
significantly from the results based on much longer timespans.

Conclusion. From our study using PCA, we observe that
there exists a set of core elements of a bug report that impact
and influence its lifetime.

Comparing these result with the perceived difficulty pre-
sented in RQ1, we see that some of these elements, like
a description of the problem, the screenshot or the stack
trace, compose the description field that we saw impacting
the resolution time. Another relevant element is the assignee
of the report, but users find it hard to provide it.

Interestingly, the elements that are the most useful in the
resolution of a software defect are also harder to provide.

From the experience with the various issue trackers and their
interfaces, we believe that a user submitting a bug report
should be offered a clean interface, that minimizes the amount
of required information, highlights the most effective elements,
and progressively requires the harder or less relevant ones.

The AdaBoost machine learning model achieves the best
results, yet it can only predict the lifetime of a limited
number of bug reports. The increment over a random classifier
prediction is particularly small for the common attributes.
This can be explained by the terse nature of the core model.
Moreover, the tracker fields improve prediction, showing a
relation between more detailed bug reports and bug lifetime.

After calculating the lifetime of each bug report in the
tracker, we compare data from the two considered platforms.
By analyzing the average lifetime of the bug reports in
each platform we note that they have a longer lifespan on
BUGZILLA than on JIRA, with an average fixing time of 239
and 166 days, respectively.

Even if the longer life of BUGZILLA projects may explain
this phenomenon, we measure a gap between the lifetime of
the reports in the two platforms (109 days for BUGZILLA
and 93 days for JIRA), even when we restrict ourselves
to consider reports submitted after 2009 (i.e., when all the
projects were active). There is an interesting, unexplained
substantial difference in the way bug reports are processed
in the two platforms. Studies can be designed and carried out
to determine whether and how the bug reporting system itself
leads to this behavior or there is a possibly unconscious self-
selection of projects in using one or the other system.

Concerning project-specific attributes, from the results of
the test, depicted in Table VI and Table VII, it emerges that
they have the least weight in predicting the lifetime of a report.
This suggests that they are not related to the fixing time. This
may be a hint that these fields probably track collateral aspects
of the evolution of a report that are not related to how quick
a bug will be solved.

Last, we examine which fields impact the prediction the
most: They are the number of words of the description and
the summary, suggesting that an accurate description of the
problem is important to engage the developers.

The fields that connect the issue with other reports are also
relevant, for example the dependent issues, as well as the fact
that a bug report is already assigned at the time of submission.

V. DISCUSSION

Threats to Validity. Dealing with large amounts of data
can pose some problems in creating an abstraction sufficiently
broad to comprise all the aspects of the data, but still specific
enough to capture its details. We spent a considerable amount
of time dealing with the representation of the data, extracting
its features and cleaning the unneeded parts.

In particular, we carefully excluded from our prediction
model all the fields that could yield a-posteriori information on
the lifetime of a report. In a large dataset it is hard, however,
to guarantee the complete soundness of the whole corpus, that
could contain hidden relations between some attributes.



There is the concern that the lifetime of a bug report, that we
used as a measure of quality of a bug report, is not relevant for
our task. However, this metric proved to be an interesting open
problem in the field and it represents an interesting heuristic
in determining the effectiveness of a report.

Future Work. Developers tend to prefer simpler models
to depict software defects. Even when provided with cus-
tomization means, the additional information did not show a
correlation with the lifetime of a report. Modern issue trackers
like JIRA and BUGZILLA are complex interfaces over a set
of tables in a relational database and the need for additional
features over time makes those platforms grow over time,
progressively turning them into inflexible colossi.

GitHub adopts the opposite approach, by providing a mini-
mal structure of a bug report that is mostly a note attached to a
commit or a piece of code. This interesting approach, however,
lacks the descriptive power of the other two platforms. The
need for a simpler model is hinted by the choices of the
development team of BUGZILLA that on version 5.0, released
in July 2015, proposes a simplified interface that asks the user
for a summary and a description of the problem, polished of
all the additional information.

We believe that the future of issue tracking systems lies
in flexible structures that can dynamically adapt to different
aspects of the development activity.

VI. RELATED WORK

Dealing with bug reports is a non-trivial task: Not only do
users have to report meaningful information and developers
have to understand and reproduce a problem, but they also
have to deal with the large, noisy, and sometimes duplicated
information stored in issue tracking systems. To minimize
the impact that dealing with reports has on the bug fixing
activity, researchers proposed different approaches to support
developers and to automate important steps.

Reliability of a Bug Report. The first important aspect
involving bug reports is the reliability and completeness of
the information contained in a report. Through questionnaires,
researchers collected information on how developers perceive
the quality of a bug report and consider the most influential
elements that help understanding a problem [24], [4], [16].
Researchers also proposed techniques to detect and avoid bug
reports that do not contain useful information [19], thus alle-
viating the developers from information overload. Bissyandé
et al. investigated the impact of the issue tracker on the
development of a project [7], finding that most bug reporters
are not developers of the project.

Automating Management of Bug Reports. Researchers
proposed different approaches to automate bug report process-
ing [21]. For example, a crucial aspect of managing bug reports
is finding the ideal person to take care of an issue, known
as triaging; Anvik et al. proposed a machine learning based
approach to automate this step [2]. Guo et al. conducted a
study to predict the aspects that impact the resolution time
of MS Windows bug reports [12]. They found that a high
number of reassignment of a report decreases the likelihood

of the report of being closed quickly. They also found that the
reputation of the submitter is an important factor to shorten
the fixing time. Given the expensive nature of the bug fixing
activity, Weiss et al. devised an approach to estimate the cost
of a bug fix in person-hours [22]. Giger et al. studied the
issue tracker of different open source project to predict bug
fixing time, finding that the assignee and the reporting month
are strong predictors [11]. Also, post-release information like
the assignee is useful in increasing the accuracy. Bhattacharya
and Neamtiu showed the low correlation of current prediction
techniques and underlined the need to find additional attributes
to increase the confidence of the time estimates [5].

Bug Reports and Social Interactions. An issue tracker
represents also a social aspect of the community: users can
interact with developers and provide feedback in fixing a
defect. Breu et al. performed an analysis on a sample of 600
bug reports, finding that interacting with developers provides
help in fixing the defect [9]. Zhou and Mockus showed that
users involved in the development activity, like bug reporting
and participating in the community, are more likely to become
stable, long time contributors [23].

Bug Report Databases Visualization. Researchers pro-
posed a number of visualizations to analyze feature of the bug
reporting systems. For example, D’Ambros et al. performed an
analysis of the BUGZILLA bug repository: They summarized
the diagram of the state transitions of a report and proposed a
set of visualizations to support the analysis of a bug database at
different levels of granularity. Their approach allows the user
to navigate the history of a single issue tracker and inspect
selected part of the system with customized filters [10].

VII. CONCLUSION

We conducted an investigation to identify the features that
are relevant to obtain a satisficing bug report. In doing so, we
provided the following contributions:

1) An overview of the perceived difficulty of submitting
elements of a bug report for users;

2) A meta-model for bug reports that represents both the
common and specific elements available in reports of
different issue trackers;

3) A publicly available dataset of more than 650,000 bug
reports, modeled according to our meta-model;

4) An analysis of the contents of the issue trackers, to
identify features that are related to reports’ lifecycle;

5) Evidence that increasing the number of fields provided
when submitting a bug report has little relation on short-
ening the lifetime of a bug.

ACKNOWLEDGEMENTS

We acknowledge the Swiss National Science foundation’s
support for project 146734 “HI-SEA”. We acknowledge Marco
Vit and Alberto Bacchelli from Delft University of Technology
for the support during the dataset collection and modeling.



REFERENCES

[1] H. Abdi and L. J. Williams. Principal component analysis. Wiley Inter-
disciplinary Reviews: Computational Statistics, 2(4):433–459, 2010.

[2] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this bug? In Pro-
ceedings of the 28th international conference on Software engineering,
pages 361–370. ACM, 2006.

[3] G. E. Batista, R. C. Prati, and M. C. Monard. A study of the behavior
of several methods for balancing machine learning training data. ACM
Sigkdd Explorations Newsletter, 6(1):20–29, 2004.

[4] N. Bettenburg, S. Just, A. Schröter, C. Weiß, R. Premraj, and T. Zim-
mermann. Quality of bug reports in eclipse. In Proceedings of the
2007 OOPSLA workshop on eclipse technology eXchange, pages 21–
25. ACM, 2007.

[5] P. Bhattacharya and I. Neamtiu. Bug-fix time prediction models: can
we do better? In Proceedings of MSR 2011 (8th Working Conference
on Mining Software Repositories), pages 207–210. ACM, 2011.

[6] C. M. Bishop. Pattern recognition and machine learning. springer, 2006.
[7] T. F. Bissyande, D. Lo, L. Jiang, L. Reveillere, J. Klein, and Y. Le Traon.

Got issues? who cares about it? a large scale investigation of issue
trackers from github. In Proceedings of ISSRE 2013 (24th International
Symposium on Software Reliability Engineering, pages 188–197. IEEE,
2013.

[8] L. Breiman and E. Schapire. Random forests. In Machine Learning,
pages 5–32, 2001.

[9] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann. Information needs
in bug reports: improving cooperation between developers and users.
In Proceedings of the 2010 ACM conference on Computer supported
cooperative work, pages 301–310. ACM, 2010.

[10] M. D’Ambros, M. Lanza, and M. Pinzger. “a bug’s life” — visualizing a
bug database. In Proceedings of VISSOFT 2007 (4th IEEE International
Workshop on Visualizing Software For Understanding and Analysis),
pages 113–120. IEEE CS Press, 2007.

[11] E. Giger, M. Pinzger, and H. Gall. Predicting the fix time of bugs. In
Proceedings of RSSE 2010 (2nd International Workshop on Recommen-
dation Systems for Software Engineering), RSSE ’10, pages 52–56, New
York, NY, USA, 2010. ACM.

[12] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy. Characterizing
and predicting which bugs get fixed: an empirical study of microsoft
windows. In Software Engineering, 2010 ACM/IEEE 32nd International
Conference on, volume 1, pages 495–504. IEEE, 2010.

[13] P. Hooimeijer and W. Weimer. Modeling bug report quality. In
Proceedings of ASE 2017 (22nd IEEE/ACM International Conference
on Automated Software Engineering), ASE ’07, pages 34–43. ACM,
2007.

[14] T. M. Mitchell. Machine learning. 1997. Burr Ridge, IL: McGraw Hill,
45, 1997.

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[16] A. Schroter, N. Bettenburg, and R. Premraj. Do stack traces help
developers fix bugs? In Mining Software Repositories (MSR), 2010 7th
IEEE Working Conference on, pages 118–121. IEEE, 2010.

[17] H. A. Simon. Models of Man: Social and Rational. John Wiley & Sons,
1957.

[18] H. A. Simon. The Sciences of the Artificial. MIT Press, 3rd edition,
2001.

[19] J. Sun. Why are bug reports invalid? In Software Testing, Verification
and Validation (ICST), 2011 IEEE Fourth International Conference on,
pages 407–410. IEEE, 2011.

[20] F. Thung, T. Bissyande, D. Lo, and L. Jiang. Network structure of social
coding in github. In Proceedings of CSMR 2013 (17th IEEE European
Conference on Software Maintenance and Reengineering, pages 323–
326, March 2013.

[21] W. Weimer. Patches as better bug reports. In Proceedings of the 5th
international conference on Generative programming and component
engineering, pages 181–190. ACM, 2006.

[22] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller. How long will it
take to fix this bug? In Proceedings of the Fourth International Workshop
on Mining Software Repositories, page 1. IEEE Computer Society, 2007.

[23] M. Zhou and A. Mockus. Who will stay in the floss community?
modeling participant’s initial behavior. Software Engineering, IEEE
Transactions on, 41(1):82–99, 2015.

[24] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter, and
C. Weiss. What makes a good bug report? Software Engineering, IEEE
Transactions on, 36(5):618–643, Sept 2010.


