
A Closer Look at Bugs
Tommaso Dal Sasso and Michele Lanza

REVEAL @ Faculty of Informatics — University of Lugano, Switzerland

Abstract—The evolution of non-trivial software systems is
accompanied by unexpected behaviour and side-effects, referred
as bugs or defects. These defects are reported to and stored in
bug tracking systems, which contain descriptions of the problems
that have been encountered. However, bug tracking systems store
and present bug reports in textual form, which makes their
understanding dispersive and unintuitive.

We present an approach to display bug reports through
a web-based visual analytics platform, named in*Bug. in*Bug
allows users to navigate and inspect the vast information space
created by bug tracking systems, with the goal of easing the
comprehension of bug reports in detail and also obtain an
understanding “in the large” of how bugs are reported with
respect to one system or to an entire software ecosystem.

I. INTRODUCTION

Modern non-trivial software projects use bug tracking sys-
tems (also known as bug trackers), such as Jira and BugZilla,
to manage the bugs that are reported. The repositories created
by such bug trackers are a valuable source of information,
and they have been used in the past to perform several types
of analyses, such as predicting future defects [1], performing
traceability linking [2], locating features [3], ameliorating bug
triaging decisions [4], etc.

Bug reports contain both structured and unstructured data.
Examples of the former are the author who reported the bug,
an id, a timestamp, etc. Examples of the latter are all natural
language comments that come with such reports, such as the
description of how and when the bug was encountered, and
also comments posted by others to discuss the bug report.
Figure 1 depicts an example bug report1, in terms of how it is
presented to a user who wants inspect such a bug report: It is
essentially a web page, which can also become very long. In
the example report we cut out 13 more events that happened
during its life time: Essentially, the report is a wall of text
that spans over multiple screens, increasing the effort needed
to get a complete picture of the history of the bug.

Indeed, bug reports are complex constructs: D’Ambros et al.
have shown that they possess complicated life cycles, which
makes them non-trivial to comprehend [5].

We present a novel approach to visualize bug reports,
through in*Bug, a web-based software visual analytics plat-
form. in*Bug allows users to navigate and inspect the vast
information space created by bug tracking systems, with the
goal of easing the understanding of bug reports in detail and
also obtain an understanding “in the large” of how bugs are
reported with respect to one system or to an entire software
ecosystem.

1Taken from the bug tracker FogBugz, which is used by the Pharo open
source community (http://pharo-project.org).

--- 13 events more ---

Fig. 1. Partial visualization of a FogBugz bug report

II. IN*BUG: AN APPROACH FOR BUG VISUALIZATION

in*Bug is a web application built on top of the Pharo
Smalltalk2 environment. It uses the Seaside3 web framework
to provide the data stored in a MongoDB database and im-
plements a RESTful API to communicate with the client. The
client interface is implemented in JavaScript using the data
manipulation and visualisation library D3.js4.

2http://www.pharo-project.org
3http://seaside.st
4http://d3js.org/

1

2

A

4

3

5

Fig. 2. in*Bug Main View

in*Bug is currently targeted at a specific FogBugz repository
revolving around the Pharo ecosystem. In Table I we provide
a summary of the currently available data.

TABLE I
SUMMARY DATA OF THE Pharo BUG TRACKER

Number of projects 46
Number of issues 8,666
Number of open issues 613
Total number of events 79,437
Average events per issue 9

A. in*Bug Main View

Figure 2 depicts the main user interface, composed of the
following panels:

1) Bug lifetime panel. This view depicts the bugs contained
in the bug repository, showing their duration (as a hori-
zontal stacked bar chart) and status (using different col-
ors). Each bug tracking system proposes a set of statuses
that an issue can acquire. We grouped these statuses into 5
categories, and assigned them the following color codes:

Active orange Work Needed red
Closed gray Resolved dark gray
Unknown light grey Selected yellow

In Figure 2 one specific bug (marked as A) is under focus.
The vertical line to the right indicates the current date.

2) Project selection panel. In this panel the user can pick
the projects whose bugs she is interested in. All projects
are shown as a tag cloud, where the size indicates the
number of bugs reported for the project, also indicated
with numbers between parentheses close to the name of
the projects.

3) Details panel. This panel provides all the information
reported about the bug report under focus in the bug
lifetime panel. This panel presents both the metadata
and the list of events that happened during the lifetime
of a bug, including description and date of each event.
The metadata is presented as extracted from the bug
repository, e.g., the opening date, the status or the last
modification date. The user can highlight an event to view
a popup with the complete description of the event and
its comments.

4) Filter and options panel. This panel allows the user
to sort and filter bugs. The three default sorting criteria
order the issues by project, opening date, or date in which
the bug has been resolved. The filter field offers the
possibility to enter either regular expressions or pieces of
Smalltalk code as queries, allowing the users to submit
custom made queries to filter bugs.

5) Status bar. This panel shows a quick status of the
application. It displays the total number of the bugs in the
repository, as for the number of bugs currently selected

d

c

b

a

Time

Unknown
Resolved

Closed
Work Needed

Active

Fig. 3. Fine-grained View of a Bug Report

and visualized.

B. A Fine-grained View of a Bug Report
Aside from the interpretation difficulties that a text based

interface presents, Figure 1 shows that a bug can be composed
of a significant number of events. These events are sequential
and are triggered by people. They describe the changes in the
properties of a bug, such as the opening of a bug, a change
of status, the addition of other pieces of information, such as
stack traces and screenshots, the assignation to a user who is
supposed to fix it, the registration of other people who are
interested in that bug, and ultimately also the release (fix) of
a bug, who usually comes with a slice of source code. These
events are the building blocks of a bug, and visualizing them
is the key for its understanding.

Figure 3 shows our current approach for the detailed depic-
tion of a bug report, composed of three elements that illustrate
its different aspects.
(a) Bug Health presents the evolution of status of a bug

during time. The changes are presented as a line chart
that shows the different states in time. The lowest possible
value represents the closed status, the highest represents
the active status.

(b) Bug History shows a bug report as a timeline composed of
its events. If an event changes the status of the bug report,
it also changes the color to render the bar. Hovering over a
block of the timeline renders the details of the bug report
in the details panel. If a new user is involved in the event
(e.g., a bug is reassigned to someone else), a small circle
is rendered at the beginning of the event.

(c) Bug Event description is used to display the details
of the events. It shows the date and the description of
the highlighted event (in yellow in Figure 3), such as
comments or other pieces of information (e.g., stack traces,
screenshots) that were added for that event.

(d) Present time. The right side of the chart represents the
current time. In this case we can observe that the bug is
currently still open and its status is “Work needed”.

C. A Coarse-Grained View of all Bug Reports

This is the first view, depicted in Figure 4, that is presented
to the user, a time-ordered multi-layer stacked chart, which
shows how many bug reports were in which status and at
which time.

1

2

Fig. 4. in*Bug summary view

Alternatively, the user can also display the various systems
to which the bugs belong. This view offers means of interac-
tion to home in on a subset of the bug reports, by using the
two sliders at the bottom and on the right. Alternatively, the
user can also click on one specific layer, and then jump to the
main view depicted in Figure 2.

III. A USAGE EXAMPLE

We illustrate, through a brief scenario, how in*Bug can be
used to search a bug repository for bugs that need work. We
impersonate the user “Marcus Denker”, who is looking for
bugs assigned to him. In the main view of in*Bug he uses
the query engine, composing the Smalltalk query shown in
Figure 5 to find all the opened bugs that are assigned to him.

[:each | each isActive
and: [each involvesUser: ’Marcus Denker’]]

Fig. 5. Smalltalk query to retrieve the issues assigned to “Marcus Denker”

The query returns 461 issues, which he can sort by date or
by project. However, these are too many issues to be manually
inspected, so he needs to further refine the query. He restricts
the research to the reports opened on the 4th April 2013.
Figure 6 shows the updated query.

[:each | each isActive
and: [(each involvesUser: ’Marcus Denker’)
and: [each dateOpened = (Date year: 2013 month: 3 day: 4)
]]]

Fig. 6. Smalltalk query to retrieve the issues assigned to “Marcus Denker”
opened on April 4 2013

The query now returns the 13 issues depicted in Figure 7.

Fig. 7. The result of query in Figure 6

Mr. Denker sees that the first bug had some initial activity,
but is stalling since then. He uses the fine-grained view to
have a complete picture of the issue, depicted in Figure 8.

Time

Unknown
Resolved

Closed
Work Needed

Active

Fig. 8. Detailed view

The view shows that the bug was fixed and then reopened. It
is now in status “Work Needed”. Mr. Denker highlights the last
event and sees that the bug was reopened by himself the 22nd
of March 2013. Since the issue was marked as “Resolved”
and then reopened, and it had no activity in a long time, Mr.
Denker decides that this is the bug he wants to work on.

With a simple click he is now redirected to the bug’s page
in the bug tracker.

IV. RELATED WORK

Surprisingly, there is only little related work dedicated to
the visualization of bug repositories.

D’Ambros et al. [6] proposed a visualization for bugs as
independent entities. Knab et al. [7][8] proposed a set of
visualization to ease the process of understanding the data

in an issue tracker and find hidden patterns. They also tested
their tool in an industrial context. Hora et al. [9] proposed a
visual exploration of the bug repository, considering bugs as
first class entities, and linking them to other software artifacts.

All these approaches focus on retrospective analyses. We
believe that while conceptually interesting, there is little prac-
tical utility in such a thing, since after all the goal is not to look
at bugs, but to actually fix them. This implies that even the
most elaborated techniques are of limited actionability, since
the bug fixing process takes place in a different space, namely
the integrated development environment (IDE). In our case the
goal is not to stop at the mere visualization, but then establish
a first-class link to the development environment. We envision
an environment where going from a specific bug report in
in*Bug to the context where the reported bug can be fixed is
a mere mouse click away. Our future efforts will be focused
on this goal.

V. CONCLUSION

We presented a novel approach to visualize bug repositories,
implemented in a visual analytics platform named in*Bug.
in*Bug currently offers a set of diverse views and interaction
means to analyze bug repositories “in the large” and then
focus on specific bugs “in the small”. Our short-term goal
is to expand the functionalities offered by in*Bug, refine the
visualizations, and then put in*Bug in “production mode”, by
offering it to the Pharo open-source community.

ACKNOWLEDGEMENTS

We acknowledge the Swiss National Science foundation’s
support for project 146734 “HI-SEA”.

REFERENCES

[1] M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating defect prediction
approaches: A benchmark and an extensive comparison,” Empirical
Software Engineering, vol. 17, no. 4-5, pp. 531–577, 2012.

[2] T. F. Bissyandé, F. Thung, S. Wang, D. Lo, L. Jiang, and L. Réveillère,
“Empirical evaluation of bug linking,” in CSMR, 2013, pp. 89–98.

[3] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location
in source code: a taxonomy and survey,” Journal of Software: Evolution
and Process, vol. 25, no. 1, pp. 53–95, 2013.

[4] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in Pro-
ceedings of the 28th International Conference on Software Engineering
(ICSE 2006). ACM Press, 2006, pp. 361–370.

[5] M. D’Ambros and M. Lanza, “Bugcrawler: Visualizing evolving software
systems,” in Proceedings of CSMR 2007 (11th IEEE European Confer-
ence on Software Maintenance and Reengineering). IEEE CS Press,
2007, pp. 333–334.

[6] M. D’Ambros, M. Lanza, and M. Pinzger, ““a bug’s life” — visualizing a
bug database,” in Proceedings of VISSOFT 2007 (4th IEEE International
Workshop on Visualizing Software For Understanding and Analysis).
IEEE CS Press, 2007, pp. 113–120.

[7] P. Knab, B. Fluri, H. C. Gall, and M. Pinzger, “Interactive views for
analyzing problem reports,” in Software Maintenance, 2009. ICSM 2009.
IEEE International Conference on. IEEE, 2009, pp. 527–530.

[8] P. Knab, M. Pinzger, and H. C. Gall, “Visual patterns in issue track-
ing data,” in New Modeling Concepts for Todays Software Processes.
Springer, 2010, pp. 222–233.

[9] A. Hora, N. Anquetil, S. Ducasse, M. Bhatti, C. Couto, M. T. Valente, and
J. Martins, “Bug maps: A tool for the visual exploration and analysis of
bugs,” in Software Maintenance and Reengineering (CSMR), 2012 16th
European Conference on. IEEE, 2012, pp. 523–526.

